Stop and go: 'Traffic policeman' protein directs crucial step in cell division

Jul 06, 2012

A traffic policeman standing at a busy intersection directing the flow of vehicles may be a rare sight these days, but a similar scene appears to still frequently play out in our cells. A protein called Lem4 directs a crucial step of cell division by preventing the progress of one molecule while waving another through, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found. The study is published online today in Cell.

For an embryo to grow or a tissue to regenerate, its must divide. When one of our cells divides to give rise to two, the membrane that surrounds the cell's – the nuclear envelope – has to be broken down and later rebuilt, once the chromosomes have been dragged apart. For this re-assembly to take place, a protein called BAF has to have chemical tags called phosphates removed. Changing a protein's phosphorylation state – its possession or lack of phosphate tags – can involve regulating the activity of proteins that add phosphate, proteins that remove phosphate, or both. The EMBL scientists discovered a new molecule, Lem4, which acts as a traffic policeman, stopping one protein from adding phosphate tags to BAF and bringing in another to remove the existing tags.

"This happens in both human cells and in the worm C. elegans, so it seems to be a strategy which evolved long ago," says Iain Mattaj, director general of EMBL, who led the work.

Through a combination of genetics and biochemical studies, the scientists found that, even though the worm version of Lem4 is markedly different from the human version, both perform the same double task at the end of cell division. Mattaj and colleagues suspect that this tactic – having a single molecule that prevents tags being added and simultaneously promotes their removal – could be employed in the many cellular processes that involve phosphate tags, such as the growth and division of cells or transmitting signals into cells from the environment.

It would now be interesting to investigate just what prompts Lem4 to start its double-action at the right moment, they say.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Live from the scene: Biochemistry in action

Aug 08, 2011

Researchers can now watch molecules move in living cells, literally millisecond by millisecond, thanks to a new microscope developed by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, ...

A switch between life and death

Aug 28, 2006

Cells in an embryo divide at an amazing rate to build a whole body, but this growth needs to be controlled. Otherwise the result may be defects in embryonic development or cancer in adults. Controlling growth requires that ...

Sweet! -- sugar plays key role in cell division

Feb 05, 2010

Using an elaborate sleuthing system they developed to probe how cells manage their own division, Johns Hopkins scientists have discovered that common but hard-to-see sugar switches are partly in control.

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.