Novel technique reveals unprecedented subatomic details of exotic ferroelectric nanomaterials

Jul 08, 2012

As scientists learn to manipulate little-understood nanoscale materials, they are laying the foundation for a future of more compact, efficient, and innovative devices. In research to be published online July 8 in the journal Nature Materials, scientists at the U.S. Department of Energy's Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, and other collaborating institutions describe one such advance - a technique revealing unprecedented details about the atomic structure and behavior of exotic ferroelectric materials, which are uniquely equipped to store digital information. This research could guide the scaling up of these exciting materials and usher in a new generation of advanced electronics.

Brookhaven scientists used a technique called electron holography to capture images of the electric fields created by the materials' atomic displacement with picometer precision - that's the trillionths-of-a-meter scale crucial to understanding these promising nanoparticles. By applying different levels of electricity and adjusting the temperature of the samples, researchers demonstrated a method for identifying and describing the behavior and stability of at the smallest-ever scale, with major implications for data storage.

"This kind of detail is just amazing - for the first time ever we can actually see the positions of atoms and link them to local in nanoparticles," said Brookhaven physicist Yimei Zhu. "This kind of fundamental insight is not only a technical milestone, but it also opens up new engineering possibilities."

Ferroelectrics are perhaps best understood as the mysterious cousins of more familiar , commonly seen in everything from refrigerator magnets to . As the name suggests, ferromagnetics have intrinsic magnetic dipole moments, meaning that they are always oriented toward either "north" or "south." These dipole moments tend to align themselves on larger scales, giving rise to the magnetization responsible for attraction and repulsion. Applying an external magnetic field can actually flip that magnetization, allowing programmers and engineers to manipulate the material.

Similarly, also have a molecular-scale dipole moment, but one characterized by a positive or negative electric charge rather than magnetic polarity. This polarization can also be manipulated, but flipping the charge requires an external electric field. This critical, tunable characteristic comes from an internal subatomic asymmetry and ordering phenomena, which was imaged in detail for the first time by the transmission electron microscopes used in this new study.

Current magnetic memory devices, such as the hard drives in most computers, "write" information into ferromagnetic materials by flipping that intrinsic dipole moment to correspond with the 1 or 0 of a computer's binary code. Those manipulated polarities then translate into everything from movies to web sites. The remarkable ability of these materials to retain information even when turned off - what's called nonvolatile storage - makes them an essential building block for our increasingly digital world.

In the emerging ferroelectric model of data storage, applying an electric field toggles between that material's two electric states, which translates into code. When scaled up similarly to ferromagnetics, that process can manifest on a computer as the writing or reading of digital information. And ferroelectric materials may trump their magnetic counterparts in ultimate efficacy.

"Ferroelectric materials can retain information on a much smaller scale and with higher density than ferromagnetics," Zhu said. "We're looking at moving from micrometers (millionths of a meter) down to nanometers (billionths of a meter). And that's what's really exciting, because we now know that on the nanoscale each particle can become its own bit of information. We knew very little about manipulating ferroelectric behavior in nanomaterials before this."

The trick to scaling up individual ferroelectric nanoparticles into useful devices is understanding just how tightly together they can be packed and ordered without compromising their distinct polarizations, which theory suggests should be extremely difficult to achieve. The electron holography experiments conducted at Brookhaven Lab demonstrated a method for determining those parameters under a range of conditions.

"Electron holography is an interferometry technique using coherent electron waves," said Brookhaven physicist Myung-Geun Han. "When electron waves pass through a ferroelectric sample, they are influenced by local electric fields, yielding a so-called phase-shift. The interference pattern between the electrons that pass through electric fields and those that don't creates what's called an electron hologram, which allows us to directly 'see' those local electric fields around individual ferroelectric nanoparticles."

Local electric fields emanate from ferroelectric nanoparticles, and these "fringing" fields are like the functional footprint of a particle's polarity. Consider the way a small magnet's effects can be felt even at a slight distance from its surface - a similar field exists in ferroelectric materials. When imaged by electron holography, the fringing field indicates the integrity of electrical polarity and the distance required between particles before they begin to interfere with each other.

The study revealed that the electric polarity could remain stable for individual ferroelectric , meaning that each nanoparticle can be used as a data bit. But because of their fringing fields, ferroelectrics need a little elbow room (on the order of five nanometers) to effectively operate. Otherwise, once scaled up for computer storage, they can't keep code intact and the information becomes garbled and corrupted. Understanding the atomic-scale properties revealed in this study will help guide implementation of these exotic particles.

"Properly used, ferroelectrics could ramp up memory density and store an unparalleled multiple terabytes of information on just one square inch of elec tronics," Han said. "This brings us closer to engineering such devices."

Explore further: Single laser stops molecular tumbling motion instantly

Related Stories

Small and stable ferroelectric domains

Mar 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

Fundamental discovery could lead to better memory chips

Mar 15, 2011

(PhysOrg.com) -- Engineering researchers at the University of Michigan have found a way to improve the performance of ferroelectric materials, which have the potential to make memory devices with more storage ...

Multiferroics could lead to low-power devices

May 17, 2011

(PhysOrg.com) -- Magnetic materials in which the north and south poles can be reversed with an electric field may be ideal candidates for low-power electronic devices, such as those used for ultra-high data storage. But finding ...

Tunneling Across a Ferroelectric

Jul 14, 2006

University of Nebraska-Lincoln physicist Evgeny Tsymbal's groundbreaking identification of an emerging research field in electronic devices earned publication this week in Science magazine.

Recommended for you

New method for non-invasive prostate cancer screening

7 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

8 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

9 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

13 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

encoded
not rated yet Jul 08, 2012
someone tell AMD or Intel or someone to start working on this right away!!!