Simple new method of extracting viral RNA from blood samples allows quick, on-the-spot identification of dengue fever

July 18, 2012
A silicon-based viral extraction chip developed at the A*STAR Institute of Microelectronics. Credit: 2012 Chris Gilloch

Dengue fever is a disease passed to humans by mosquitoes. Millions of people every year are infected worldwide, and around 4,000–5,000 of these cases will suffer severe complications or death. Dengue fever most commonly affects young people between the ages of 15 and 24.

Currently, doctors identify dengue by clinical observations followed by a series of laboratory tests of blood and urine samples. These tests can take seven to ten days to complete, and require highly skilled staff and specialist equipment. Due to the complexity of the process, there is also a chance of cross-contamination during the procedure.

For these reasons, researchers are keen to develop quicker, more accurate ways of identifying viruses such as . Siti Mohamed Rafei and co-workers at A*STAR’s Institute of Microelectronics, together with scientists from Veredus Laboratories in Singapore and the National University of Singapore, have designed and built a new self-contained microsystem that can ascertain the presence of dengue fever in blood samples within 30 minutes. Crucially, the new cartridge can be operated by non-skilled staff.

The microsystem works by extracting viral RNA from patients’ . Using a silicon-based viral extraction chip, and a cartridge containing reservoirs pre-filled with the different reagents required to extract viral RNA, the microsystem is fully self-contained.

In conventional virus detection systems, the chance of cross contamination is high because the extraction process requires extensive manual pipetting of reagents. In the newly designed system, the silicon chip is embedded in a polymeric cartridge that allows the user to preload all necessary reagents, making it fully self-contained and disposable. This added feature is extremely useful for testing infectious disease that might be highly virulent or contagious.

The cartridge is placed inside a handheld computer device with a touch screen. Pressing the start button operates a pre-determined series of plungers, which release the reagents into the silicon chip containing the blood sample. The reagents allow for the extraction of viral RNA and virus identification readout within 30 minutes.

The sequence of plungers and their speed are fully computer-controlled, thus the cartridge is configurable, user-friendly and does not require specialist knowledge to operate. In addition, the is adaptable to multiple biochemical protocols, not just to the viral RNA for dengue fever as described here. In future, the researchers hope to identify many infectious diseases with this technology.

Explore further: Dengue fever strikes Taiwan

More information: Zhang, L. et al. A self-contained disposable cartridge microsystem for dengue viral ribonucleic acid extraction. Sensors and Actuators B: Chemical 160, 1557–1564 (2011).

Related Stories

Dengue fever strikes Taiwan

September 14, 2006

At least 163 people in Taiwan have come down with infectious dengue fever, adding to a growing epidemic made worse by rainy weather.

China alerts about dengue fever

October 11, 2006

China has issued an alert against dengue fever as the peak season for the mosquito-borne disease continues in the southern parts of the country.

Study: Dengue fever is underreported

October 16, 2007

The American Society of Tropical Medicine and Hygiene is concerned about the U.S. blood supply due to underreporting of dengue fever.

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Trio wins Nobel Prize for mapping how cells fix DNA damage

October 7, 2015

Tomas Lindahl was eating his breakfast in England on Wednesday when the call came—ostensibly, from the Royal Swedish Academy of Sciences. It occurred to him that this might be a hoax, but then the caller started speaking ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.