Scientists achieve highest resolution ever for human protein

Jul 12, 2012

Never has a crystal structure of a human protein molecule in a cell wall been so crystal clear. Leiden researchers Ad IJzerman and Laura Heitman, together with American colleagues, have achieved the most detailed crystal structure ever of a target protein for medicines. The findings have been reported in Science.

The protein in question is the adenosine A2A receptor, the main receptor for caffeine in the . This receptor is also linked to Parkinson's disease. The class of around 800 proteins to which the adenosine A2A receptor belongs forms the target for roughly half of all medicines. "No wonder that researchers across the globe have been trying for decades to find out more about these proteins," comments IJzerman.

To find out whether medicines are effective, you need to understand how the receptors in the cell wall work. An important means of achieving this is to crystallize the protein, so that it can be examined with X-rays. IJzerman and his research team had already managed in 2008 to determine the crystal structure of the adenosine A2A receptor, but at a lower resolution. IJzerman: 'Since then, a handful of structures of other receptors have appeared in the scientific literature, but at such a low resolution that in some cases it was even difficult to determine how medicines bind to such .' Heitman continues: 'With our new structure, we have achieved the highest resolution ever for any protein in the human cell wall.'

The degree of detail of the new high-resolution makes it possible to see things that were previously not discernible. "It is like comparing what Galileo saw with his primitive telescope with the images made by the Hubble telescope," IJzerman explains. It is now possible to see, for instance, how play a vital role in activating the adenosine A2A receptor. A water channel in the inactive receptor appears to be disrupted once it has been activated. The teams also discovered a hidden site where a natrium ion is located, away from the receptor's drug-binding cavity. This gives an insight into the way natrium ions affect the working of hormones and neurotransmitters in the body, something that was previously a mystery.

The high-resolution structure was the result of a clever strategy by the collaborators at the Scripps Institute in La Jolla (California). By binding the receptor protein, that is oily and therefore does not easily crystallize, to another protein that crystallizes readily, the researchers were able to produce minuscule crystals of the fusion product. Previously, they had used the lysozyme for this process, but this time they used proteins that crystallize even more easily and that are a better match for the receptor. This then yielded the high resolution structure that gives so much more information than any other receptor structure previously elucidated.

Research indicates that coffee drinkers are less susceptible to developing Parkinson's disease. Caffeine has been shown to inhibit the effect of the receptor, A2A, associated with this disorder.

Explore further: Protein secrets of Ebola virus

Related Stories

Research sheds new light on heroin addiction

May 14, 2008

Researchers from the Howard Florey Institute in Melbourne have identified a factor that may contribute towards the development of heroin addiction by manipulating the adenosine A2A receptor, which plays a major role in the ...

Receptor may hold key to multiple sclerosis treatment

Jun 11, 2012

(Medical Xpress) -- A receptor recently discovered to control the movement of immune cells across central nervous system barriers (including the blood-brain barrier) may hold the key to treating multiple sclerosis ...

Recommended for you

Chemical biologists find new halogenation enzyme

15 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

20 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

20 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

22 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

PinkElephant
not rated yet Jul 13, 2012
For U.S. readers: "natrium" is the Latin word for "sodium" (which is why the symbol in the periodic table is 'Na'.) In Netherlands (and in most of Europe) chemists use Latin names for elements as a matter of course.