Scientists find a way to make disease-causing proteins vulnerable to drugs

Jul 27, 2012 By Bill Hathaway
Illustration by Michael Helfenbein

(Phys.org) -- One of the most daunting challenges facing pharmaceutical scientists today are “undruggable proteins” – the approximately 80% of proteins involved in human disease that do not interact with current drugs.

Yale researchers have identified a novel way to design drugs for these previously inaccessible proteins. The research was published July 26 in the journal Chemistry & Biology.

“There is enormous interest in molecules that can both traverse cell membranes and inhibit interactions between proteins,” said Alanna Schepartz, the Milton Harris '29 Ph.D. Professor of Chemistry, director of the Yale Chemical Biology Institute and senior author of the paper. “Proteins and polypeptides are very good at inhibiting interactions between proteins in a test tube. We have identified a signal that helps these proteins enter the cell.”

Most drugs today are very small molecules and fit snuggly into relatively deep pockets in a protein, usually to inhibit a chemical reaction. But many proteins involved in disease do not perform chemical reactions. Instead they bind to other proteins, or DNA, or RNA. It has proven extremely difficult to design small molecules that inhibit these binding interactions.

Although proteins are used as drugs today, they operate almost exclusively in areas outside the cell, not within the cells where many disease processes originate.

Schepartz and her team identified a molecular signal that allows potentially therapeutic proteins to hitch a ride into cells using vesicles, or small packets of molecular information that fuse with membranes of cells in a process called endocytosis. The signal helps the escape from the vesicle to reach the interior of the cell.

“We are very interested to understand how this release signal works, as it may allow researchers to engineer molecules to follow a prescribed pathway into cell,” Schepartz said.

Other Yale authors are Jacob S. Appelbaum, Jonathan R. LaRochelle, Betsy A. Smith, Daniel M. Balkin and Justin M. Holub.

The research was funded by the National Institutes of Health.

Explore further: Video: How did life on Earth begin?

Related Stories

New proteins inhibit HIV infection in cell cultures

Jul 24, 2012

(Medical Xpress) -- Yale Cancer Center scientists have developed a new class of proteins that inhibit HIV infection in cell cultures and may open the way to new strategies for treating and preventing infection ...

Yale scientists map cell signaling network

Nov 30, 2005

Yale University scientists have mapped, for the first time, the proteins and kinase signaling network that control how cells of higher organisms operate.

Researchers make cell biology quantitative

Oct 20, 2005

Yale researchers have reported a method to count the absolute number of individual protein molecules inside a living cell, and to measure accurately where they are located, two basic hurdles for studying biology ...

Recommended for you

Chemical biologists find new halogenation enzyme

16 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

22 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

22 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 0