Scientists develop new carbon accounting method to reduce farmers' use of nitrogen fertilizer

Jul 18, 2012
Agricultural crops are studied in experiments at NSF's Kellogg Biological Station LTER site. Credit: Julie Doll, NSF KBS LTER Site

It's summer. For many of us, summer is a time synonymous with fresh corn, one of the major field crops produced in the United States.

In 2011, corn was planted on more than 92 million acres in the U.S., helping the nation continue its trend as the world's largest exporter of the crop.

Corn is a nitrogen-loving plant. To achieve desired production levels, most U.S. farmers apply synthetic nitrogen fertilizer to their fields every year.

Once nitrogen fertilizer hits the ground, however, it's hard to contain and is easily lost to groundwater, rivers, oceans and the atmosphere.

"That's not good for the crops, the farmers or the environment," says Phil Robertson, a scientist at Michigan State University and principal investigator at the National Science Foundation's (NSF) Kellogg Biological Station (KBS) Long-Term Ecological Research (LTER) site.

KBS is one of 26 such NSF LTER sites across the United States and around the globe in ecosystems from forests to .

Nitrogen lost to the environment from is nitrogen not used by crops, Robertson says. "This costs farmers money and degrades water and air quality, with significant health, biodiversity and downstream ."

Farmers already manage fertilizer to avoid large losses. But, to reduce losses further, it currently costs more money than the fertilizer saves.

Robertson and colleagues are working on a way to help make the time and expense of efforts to mitigate fertilizer loss worthwhile. They're putting the finishing touches on a program that would pay farmers to apply less nitrogen fertilizer in a way that doesn't jeopardize yields. The program, called the nitrous oxide methodology, is being conducted in partnership with the Electric Power Research Institute.

"This project is a great example of how long-term, fundamental research can contribute practical solutions to important of concern in the U.S.--and ultimately around the world," says Matt Kane, an NSF program director for LTER.

Scientists at the KBS LTER site research agriculture and climate change. Credit: Kurt Stepnitz

In the United States, agriculture accounts for almost 70 percent of all nitrous oxide emissions linked with human activity. Nitrous oxide is one of the major gases contributing to human-induced climate change; it has a lifetime in the atmosphere of more than 100 years. In addition, a molecule of nitrous oxide has more than 300 times the heat-trapping effect in the atmosphere as a molecule of carbon dioxide.

In soils, the production of nitrous oxide through microbial activity is a natural process. By applying large amounts of fertilizer, however, humans have greatly increased the amount of nitrous oxide in soils. This is particularly true when nitrogen fertilizer is added in larger amounts than the crop needs, and when it is applied at times or in ways that make it difficult for the crop to get the full benefit.

This is an aerial view of agriculture experiments at the Kellogg Biological Station. Credit: Kurt Stepnitz

"Improving the efficiency of nitrogen use for field crop agriculture holds great promise for helping mitigate climate change," Robertson says.

The nitrous oxide greenhouse gas reduction methodology, which is a way for farmers to participate in existing and emerging carbon markets, recently was approved by the American Carbon Registry and is in its final stages of validation by the Verified Carbon Standard--two carbon market standards that operate worldwide.

When farmers reduce their nitrogen fertilizer use, they can use the methodology as a means of generating carbon credits. These credits can be traded in carbon markets for financial payments.

The scientific underpinning for the methodology rests on decades of research Robertson and colleagues have conducted at the KBS LTER site.

"By closely following nitrous oxide, crop yields and other ecosystem responses to fertilizers," Robertson says, "we discovered that nitrous oxide emissions increase exponentially and consistently with increasing use."

The idea of the methodology is to offer ways of using less fertilizer to produce crops. But if farmers apply less fertilizer, will their crop production take a hit?

"Carbon credits provide an incentive to apply fertilizer more precisely, not to reduce yields," says Robertson. "If yields were reduced significantly, the climate effect would be nil because a farmer somewhere else would have to use more nitrogen to make up the yield loss, thereby generating more nitrous oxide."

The new methodology developed at NSF's KBS LTER site was successfully used by a Michigan farmer in Tuscola County as part of a proof-of-concept project.

"A major value of the approach is that it is straightforward to understand and implement," says KBS LTER scientist Neville Millar, who co-led development of the methodology.

In addition to providing an economic incentive, the methodology is a tool farmers can apply to enhance their land stewardship.

"The same strategies that farmers can use to minimize loss will act to reduce the loss of nitrate to groundwater and loss of other forms of nitrogen to the atmosphere," says Millar.

Adam Diamant, technical executive at the Electric Power Research Institute and a co-developer of the methodology, says the new approach resulted in a "quadruple win: for farmers, for industrial organizations that may be required to reduce their greenhouse gas emissions, for the atmosphere and for water quality from the upper Midwest all the way to the Gulf of Mexico."

Adds Robertson: "We're in uncharted territory with a growing global human population and unprecedented environmental change.

"Performing the research that links environmental benefits to environmental markets, without compromising crop yields, is crucial for feeding more people while sustaining Earth's ecosystems."

Explore further: US delays decision on Keystone pipeline project

add to favorites email to friend print save as pdf

Related Stories

Waterways contribute to growth of potent greenhouse gas

Dec 20, 2010

Nitrous oxide, a potent greenhouse gas, has increased by more than 20 percent over the last century, and nitrogen in waterways is fueling part of that growth, according to a Michigan State University study.

Studying Fertilizers to Cut Greenhouse Gases

Nov 18, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists have found that using alternative types of fertilizers can cut back on greenhouse gas emissions, at least in one part of the country. They are ...

Recommended for you

US delays decision on Keystone pipeline project

22 hours ago

The United States announced Friday a fresh delay on a final decision regarding a controversial Canada to US oil pipeline, saying more time was needed to carry out a review.

New research on Earth's carbon budget

Apr 18, 2014

(Phys.org) —Results from a research project involving scientists from the Desert Research Institute have generated new findings surrounding some of the unknowns of changes in climate and the degree to which ...

User comments : 0

More news stories

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...