Scanning Webb's surrogate eye

Jul 06, 2012 By Laura Betz
Credit: NASA/Chris Gunn

(Phys.org) -- Engineer Erin Wilson adds aluminum tape to electrical cables to protect them from the cold during environmental testing of special optical equipment. These tests will verify the alignment of the actual flight instruments that will fly aboard NASA’s James Webb Space Telescope.

"Because the flight science instruments detect infrared light, they must be extremely cold to work, and so the environment we test them in must be extremely cold too," Wilson says.

Wilson is working in the Space Environment Simulator thermal-vacuum chamber at 's Goddard Space Flight Center in Greenbelt, Md. The subject of the testing is the Optical Telescope Element (OTE) Simulator, or OSIM. The hardware seen in the background is the Beam Image Analyzer, which will be used to measure OSIM. It sits above the OSIM, which is under the platform that Wilson is working on. The OSIM is about two stories tall and almost as wide as the whole test chamber.

The job of the OSIM is to generate a beam of light just like the one that the real telescope optics will feed into the actual flight science instruments. Because the real flight will be used to test the real flight telescope, their alignment and performance have to be verified first, using OSIM, and before that can happen, the OSIM has to tested and verified.

In space, the telescope optics act as Webb’s eye, and on the ground, the OSIM substitutes for the telescope optics, says Robert Rashford, manager for the OSIM as well as the Integrated Science Instrument Module (ISIM) Electronics Compartment. This hardware is being tested in an environment that mimics the hard vacuum and cold temperatures that Webb will experience in space. After Erin and others were done setting things up in the test chamber, Goddard engineers sealed it up, evacuated all the air and lowered the temperature of the equipment being tested to 42 Kelvin (-384-point-1 Fahrenheit or -231-point-1 Celsius).

"It has taken a little over a month to get temperatures cold enough to duplicate the temperatures that Webb will see in operation in ," Rashford says.

In the next couple weeks Rashford and the team of Goddard engineers will measure the OSIM with the Beam Image Analyzer. This extremely cold or “cryogenic” optical testing and verification process will likely take 90 days to complete.

Explore further: Up, up and away, in the name of science education

Related Stories

James Webb space telescope's mirrors get 'shrouded'

Jun 07, 2012

(Phys.org) -- Earlier this year, NASA completed deep-freeze tests on the James Webb Space Telescope mirrors in a "shroud" at the X-ray & Cryogenic Facility (XRCF) at Marshall Space Flight Center in Huntsville, ...

Recommended for you

Up, up and away, in the name of science education

12 hours ago

US researchers extol the virtues of high-altitude balloons for science education in a research paper published in the International Journal of Learning Technology. According to Jeremy Straub of the University of North Dakota ...

New plan proposed to send humans to Mars

13 hours ago

A new, cost-constrained U.S. strategy to send humans on Mars, could be achieved within projected NASA budgets by minimizing new developments and relying mainly on already available or planned NASA assets. ...

'Cause unknown' in SpaceX rocket blast

15 hours ago

SpaceX came up empty Monday in its search to figure out why an unmanned Falcon 9 rocket exploded minutes after blasting off from a NASA launchpad with a load of space-bound cargo.

SOFIA points telescope toward Pluto occultation

19 hours ago

The Stratosphere Observatory for Infrared Astronomy (SOFIA) is a modified Boeing 747SP aircraft that makes celestial observations with its German-built 100-inch telescope. The telescope is enhanced to collect ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.