Findings from quantitative analysis of chromatin structure challenge classical model of static regularity

Jul 20, 2012
Figure 1: Chromosomes (left) consist of tightly compacted and irregularly folded nucleosome fibers. Credit: Reproduced from Ref. 1 © 2012 Yoshinori Nishino et al., RIKEN SPring-8 Center

The DNA in the human genome is organized into irregularly folded fibers during cell division, according to a recent study by a team of researchers led by Kazuhiro Maeshima of the RIKEN SPring-8 Center and RIKEN Advanced Science Institute in Japan. 

is wrapped around proteins called histones to form nucleosome , which are tightly compressed into the chromosomes by large protein complexes called condensins (Fig. 1). Many previous studies suggest that nucleosomes are organized into regular fiber structures that are 30 nanometers in diameter, which led to the classical model of overall chromosome structure. However, other studies suggest that these regular fiber structures exist only in specialized cell types.

To resolve these conflicting results, Maeshima and his colleagues investigated chromosome structure in mitotic, or dividing, HeLa cells using three different techniques: cryo-electron microscopy, which allows for observation of frozen, hydrated biological structures at high resolution without producing the artifacts seen in conventional EM; small-angle x-ray scattering (SAXS), which detects repeating structures in solutions of biological samples; and ultra-small x-ray scattering (USAXS), a newly developed type of SAXS that can resolve repeating structures across larger dimensions.

All three techniques produced consistent results. The researchers detected repeating structures at approximately every 11 nanometers, but not at longer distances, suggesting that chromatin is organized like beads on a string with an irregular folding pattern. The USAXS method further revealed that the chromosomes have a fractal nature: the same organization repeats itself at different scales, and that is the structures arrange into a rod shape.

Maeshima and colleagues propose two possible explanations for the rod-shaped and large-scale organization of the chromosome. One is that the condensins bind to specific sites in the DNA, causing it to form self-assembling loops that interact with each other and produce repeating structures along the axis of the chromosome. Alternatively, the formation of regularly repeating looped structures alone might be sufficient to generate the observed rod shape because of repulsive forces between adjacent loops.

The researchers predict that irregular folding would make chromosomes more flexible: this type of organization has fewer physical constraints than a regular structure. They also suggest that irregular folding is common to in interphase, or non-dividing cells, as it makes DNA more accessible to the molecular machinery for RNA transcription and DNA replication. 

“We focused on chromosomes in dividing cells,” says Maeshima, “but we assume that a similar irregular folding also exists in interphase cells, and are now assessing that assumption.”

Explore further: Top Japan lab dismisses ground-breaking stem cell study

More information: Nishino, Y., et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. The EMBO Journal 31, 1644–1653 (2012)

add to favorites email to friend print save as pdf

Related Stories

Shaping up for cell division

Nov 04, 2011

The shape of chromosomes is determined by the relative levels of key protein complexes, research conducted by Keishi Shintomi and Tatsuya Hirano of the RIKEN Advanced Science Institute has shown.

Elusive Z- DNA found on nucleosomes

Jan 20, 2012

New research published in BioMed Central's open access journal Cell & Bioscience is the first to show that left-handed Z-DNA, normally only found at sites where DNA is being copied, can also form on nucleosomes.

Study Confirms DNA Repair Model After 26 Years

Apr 14, 2010

(PhysOrg.com) -- UC Davis researchers have confirmed a central idea about chromosome repair, more than a quarter century after it was first proposed. The finding is important to scientists who seek to understand DNA repair, ...

DNA constraints control structure of attached macromolecules

Jun 28, 2005

A new method for manipulating macromolecules has been developed by researchers at the University of Illinois at Urbana-Champaign. The technique uses double-stranded DNA to direct the behavior of other molecules. In previous ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.