Researchers improve on an old model for studying predator search patterns

Jul 16, 2012 by Donna Hesterman

(Phys.org) -- The inspiration for the next Google or search-and-rescue drone may spring from a seemingly unlikely source: Watching how animals sniff out food, according to new University of Florida research.

Innovators in everything from robotics to Internet search engines study patterns that animal predators walk while searching for prey. But mathematical models that have been used in the past to study these patterns are in need of a little revamping, the UF study finds — because in the animal kingdom, scent plays a major roll in tracking prey.

The study appears in the July 10 edition of the Proceedings of the National Academy of Sciences.

“Imagine trying to find a bakery in a foreign city without a map,” said Andrew Hein, a researcher in UF’s biology department. “You’re in sort of a general search mode until you catch of whiff of fresh bread. Then you start to look more carefully for visual cues like a store front or someone else carrying a baguette.”

The strategy saves predators time and energy by helping them cut to the chase, but the models currently used to represent on the hunt aren’t equipped with olfactory senses. Hein worked with colleague Scott McKinley, a researcher in the mathematics department at UF, to endow two widely used computer models with a simulated sense of smell.

“In a natural environment, smell can be a very vague, directionless signal for where a target, like prey or a mate, can be found,” Hein said. “But even when an animal smells nothing, that signal is telling him something: Keep moving.”

In the study, Hein and McKinley pit the olfactory-equipped computer models against two of the original models in a series of virtual hunts. The models with smelling power won hands down. They were far more efficient and reliable than their non-sniffing counterparts, the study found.

The improvement also made the behave more like what biologists have observed in nature, Hein said.

“We know that albatrosses alter their flight pattern when they encounter scent,” he said. “And frigatebirds find the eddies where they hunt at least in part, by smell.”

McKinley said their work addresses a gap in the existing body of literature on modeling animal search patterns. But Massimo Vergassola, a physicist at the Pasteur Institute in Paris, said the study is important because it provides an abstraction of general principles that can be useful for scientists modeling bio-inspired search strategies in a variety of applications.

People are using this sort of research to inform a range of exploration, Vergassola said, from insect mating and reproduction control to “sniffer robots” that could be deployed to detect chemical leaks.

Explore further: Sexual selection isn't the last word on bird plumage, study shows

add to favorites email to friend print save as pdf

Related Stories

New tool enhances view of muscles

Jan 23, 2012

Simon Fraser University associate professor James Wakeling is adding to the arsenal of increasingly sophisticated medical imaging tools with a new signal-processing method for viewing muscle activation details that have never ...

Recommended for you

A peek at the secret life of pandas

Mar 27, 2015

Reclusive giant pandas fascinate the world, yet precious little is known about how they spend their time in the Chinese bamboo forests. Until now.

Flocks of starlings ride the wave to escape

Mar 26, 2015

Why does it seem as if a dark band ripples through a flock of European starlings that are steering clear of a falcon or a hawk? It all lies in the birds' ability to quickly and repeatedly dip to one side to avoid being attacked. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.