Think pink! Success of pink bacteria in oceans of the world

Jul 19, 2012

Marine bacteria of the Roseobacter clade are found to be spread widely throughout the oceans of this planet from the tropics to as far as Antarctica. They live freely in the water, in sediments and as symbiotic partners of algae. Special photosynthetic pigments are responsible for their pink colour. Marine bacteria distinguish themselves through an unusually diverse metabolism, which opens interesting opportunities for biotechnological applications. A reconstruction of their evolutionary development will provide a key for scientists to understand the secret for their ecological success.

Researchers at the DSMZ have now discovered that, through plasmids, representatives of the Roseobacter group may exchange such important as the capability to perform photosynthesis. This type of across the species boundary might make it possible for of the Roseobacter clade to quickly and effectively conquer new ecological niches. The results of experiments have been published in the magazine and are already available online.

Since 2010, scientists of the Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Leibniz Institute DSMZ German Collection of Microorganisms and ) have been working together with marine microbiologists, ecologists, biochemists, geneticists and information technologists in the Transregio 51 Roseobacter collaborative research centre. The goal of this collaborative research group is to understand the evolutionary, genetic and physiological principles which are responsible for the success of this group of bacteria that have not yet been the object of very extensive research to date. What special do these bacteria have to enable them to adapt to the most varied of ?

The DSMZ researchers in the team of Dr. Jörn Petersen, Private Lecturer and Dr. Silke Pradella have now found a clue leading to an important point of reference. The scientists examined the evolution and importance of so-called "plasmids" within the Roseobacter clade which are to be found there in great numbers and varieties.

"Plasmids are usually ring-shaped DNA molecules with a size of up to 1 million base pairs which can duplicate themselves independently of the bacterial chromosome. Natural plasmids encode such useful properties as nitrogen fixation. However, they are also responsible for the development of multiresistant hospital pathogens", the geneticist and evolutionary biologist Dr. Jörn Petersen explains.

Jörn Petersen continues saying that, "it had been assumed for a long time that all of the important genetic information in bacteria was to be found on the chromosome". For representatives of the Roseobacter clade, however, a colleague in the team, Dr. Silke Pradella, had already been able to refute this assumption in an earlier experiment. She proved that the central gene responsible for photosynthesis in Roseobacter litoralis and Sulfitobacter guttiformis is located on plasmids. With their newest work, this working group was even able to show that the complete photosynthesis gene cluster, with more than 40 genes, had been transferred from the chromosome to a plasmid.

What is the reason for this unusual genetic organization? "Our explanation for this is that the Roseobacter clade makes use of its plasmids as a 'mobile container of genetic information', in order to, whenever necessary, rapidly and mutually exchange important metabolic functions even beyond the species boundaries", Dr. Petersen explains. "The access to the mutual gene pool can be understood as type of neighbourly assistance between these . Through the transfer of the photosynthesis genes, the bacteria not only become pink, but also acquire a special advantage for survival through their ability to now attain additional energy from sunlight. A genetic exchange with the use of plasmids as a vector would also conclusively explain why this capability of performing photosynthesis within the Roseobacter group is distributed only sporadically and without any recognizable pattern."

The broad range of methods established at the DSMZ and the new knowledge concerning plasmid biology provide the basis for a new systems biology collaborative project within the framework of the Roseobacter collaborative research centre. The goal of this is to clarify the physiological significance of plasmids in the model organism Phaeobacter gallaeciensis DSM 17395. For this purpose, the plasmid knock-out mutants produced by the working group should be analysed and compared with the Phaeobacter wild-type with the aid of the complete OMICS pipeline (genomes, transcriptomes, proteomes, metabolomes, fluxomes).

Explore further: Top Japan lab dismisses ground-breaking stem cell study

More information: Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S (2012) Think pink: photosynthesis, plasmids and the Roseobacter clade. Environmental Microbiology. Published online: onlinelibrary.wiley.com/doi/10… 920.2012.02806.x/pdf

add to favorites email to friend print save as pdf

Related Stories

Antibiotic resistance spreads rapidly between bacteria

Apr 11, 2011

The part of bacterial DNA that often carries antibiotic resistance is a master at moving between different types of bacteria and adapting to widely differing bacterial species, shows a study made by a research ...

Ecosystems under threat from ocean acidification

Mar 29, 2010

Acidification of the oceans as a result of increasing levels of atmospheric carbon dioxide could have significant effects on marine ecosystems, according to Michael Maguire presenting at the Society for General Microbiology's ...

Stealth technology maintains fitness after sex

Jan 12, 2007

Pathogens can become superbugs without their even knowing it, research published today in Science shows. 'Stealth' plasmids - circular 'DNA parasites' of bacteria that can carry antibiotic-resistance genes - produce a prot ...

Triple threat: One bacterium, three plasmids

Nov 14, 2011

Researchers from Australia found something completely new while conducting a genetic study of the pathogenesis of an enteric disease in birds. They report what is believed to be the first bacterial strain to carry three closely ...

Evolutionary origin of bacterial chromosomes revealed

Mar 26, 2009

Researchers have unveiled the evolutionary origin of the different chromosomal architectures found in three species of Agrobacterium. A comprehensive comparison of the Agrobacterium sequence information with the genome sequences ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

19 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.