NRL brings inertia of space to robotics research

Jul 18, 2012
Precision honed to within +/-0.0018 inches tolerance across its surface, the Gravity Offset Table (shown right) will allow scientists to emulate the inertia of space in the laboratory using full-size spacecraft and robotic arms like the Front-End Robotic Enabling Near-Term Demonstration (FREND) arm pictured center. Credit: US Naval Research Laboratory

The U.S. Naval Research Laboratory Spacecraft Engineering Department's space robotics research facility recently took possession of a one-of-a-kind 75,000 pound Gravity Offset Table (GOT) made from a single slab of solid granite.

To emulate the of found in space on full-scale replica spacecraft on requires not only a hefty amount of air to 'float' the object, but a precision, frictionless, large surface area that will allow researchers to replicate the effects of inertia on man-made objects in space.

"We accomplish this by floating models of spacecraft and other resident space objects on air bearings –similar to the dynamics of an upside-down air hockey table," said Dr. Gregory P. Scott, space robotics scientist. "Based on the inertia of the 'floating' system, a realistic spacecraft response can be measured when testing thrusters, attitude control algorithms, and responses to contact with other objects."

Currently, the grappling, or capture, of spacecraft in orbit is accomplished by specifically engineered pre-configured couplers and mating mechanisms. To capture and service a 'free-flying' orbiting spacecraft that has no conventional coupling mechanism, researchers must first be able to demonstrate minimal rates of error in a cost effective and efficient manner using many spacecraft configurations here on Earth.

Honed by Precision Granite® to federal 'AAA' specifications, the 20 feet by 15 feet, 1.5-foot thick single piece of granite is within +/- 0.0018 inches flat across its surface. The precision GOT will allow NRL researchers to precisely simulate the frictionless motion of objects in space and understand the dynamics of docking and servicing satellites on-orbit — a function of increasing importance as rising launch costs and the addition of new orbiting spacecraft can be offset by the repair or updating of assets already in Earth orbit.

Quarried from the Raymond Granite Quarry, Clovis, Calif., the 450 cubic-foot, 37.5 ton GOT slab is thought to be the largest, single slab, precision granite table in the world with tolerances capable of allowing engineers to simulate service of full-scale satellite with significant structural flexibility to a degree of accuracy unmatched by any other space robotics facility.

Explore further: Europe sat-nav launch glitch linked to frozen pipe

add to favorites email to friend print save as pdf

Related Stories

Venus Express spacecraft fires main engine

Feb 20, 2006

One hundred days after its launch to Venus, the European Space Agency's Venus Express has successfully tested its main engine for the first time in space.

U.S.-French satellite prepared for launch

May 01, 2008

A U.S.-French spacecraft designed to continue a long-term survey of Earth's oceans has arrived in the United States for its final launch preparations.

Recommended for you

Europe sat-nav launch glitch linked to frozen pipe

5 hours ago

A frozen fuel pipe in the upper stage of a Soyuz launcher likely caused the failure last month to place two European navigation satellites in orbit, a source close to the inquiry said Wednesday.

Cyanide ice in Titan's atmosphere

7 hours ago

Gigantic polar clouds of hydrogen cyanide roughly four times the area of the UK are part of the impressive atmospheric diversity of Titan, the largest moon of Saturn, a new study led by Leiden Observatory, ...

Video: Alleged meteor caught on Russian dash cam (again)

10 hours ago

Thanks to the ubiquity of dashboard-mounted video cameras in Russia yet another bright object has been spotted lighting up the sky over Siberia, this time a "meteor-like object" seen on the evening of Saturday, Sept. 27.

User comments : 0