New-generation sensor combines lasers and mechanics

Jul 26, 2012
New-generation sensor combines lasers and mechanics
The disk and the "cord" interact to allow ultra-sharp measures.

( -- Swiss scientists have developed a rapid, precise opto-mechanical measurement system that can be embedded into a silicon chip. This new technology could revolutionize the domain of sensors and atomic force microscopy.

Resonators are used to detect infinitesimal quantities of matter in the atmosphere. Here’s how it works: when a microscopic string comes into contact with a particle or a gas molecule, it vibrates. Each kind of molecule elicits a specific vibration, a bit like a note on a guitar string, giving it a unique signature that can be used to identify the gas or suspended particle in the air, even in minuscule quantities. With colleagues Pierre Verlot and Emanuel Gavartin, EPFL physicist Tobias Kippenberg has made a critical step towards developing more compact, sensitive and precise sensors. The team has published a description of their device, which can be carried on board a single chip, in the journal Nature Nanotechnology.

A disk of light

Researchers are currently in a race to miniaturize resonators. This makes sense, because the smaller the string, the more strongly it will react when it comes in contact with a particle – in other words, the smaller the sensor, the more sensitive it will be. With a string that’s only a few hundred nanometers in diameter, the device developed by Gavartin in collaboration with EPFL’s Center for Micronanotechnology (CMi) is one of the most sensitive that can be operated at room temperature.

The scientists use a laser beam that’s directed into a tiny glass disk to analyze the string’s vibrations. The beam circulates 1,000 times in barely 2 nanoseconds, and then exits the disk. The string is placed just above this photon track, and when it vibrates, it perturbs the beam. By comparing the wavelength of the laser when it enters the disk and when it leaves it, the scientists can deduce the movements of the string.

Virtual cooling system

The main obstacle the team faced was a physical phenomenon known as “Brownian motion.” This causes random vibrations on the string that amplify with every impact and take a certain amount of time to die off. This phenomenon significantly slows down measurements. It’s a bit like if, after having played a note on a guitar, one had to wait for the string to stop vibrating before the next note could be played.

This difficulty is typically overcome by cooling the system using helium, because Brownian motion is greatly reduced at ultra-cold temperatures. But the EPFL team was able to develop a technique that diminished the Brownian motion and still allowed the system to remain at room temperature. One laser, the “probe,” detects movements in the string. The signal is processed in real time and used to modulate a second laser, the “control,” which is injected into the disk to counteract the effects of the Brownian motion by exerting a counterforce on the string. It’s a kind of virtual cooling system.

Rapid, precise and simple to use

Using this innovative technique, the scientists were able to reduce the time between measurements 32-fold, while operating at about 20 °C. This level of precision is extraordinary. “If instead of a string, we had a 100m-long bridge, we could, keeping all the same proportions, measure a deformation of a single nanometer, or one ten-thousandth of the diameter of a hair, in real time,” explains Verlot, who was a co-author on the paper.

The system developed at EPFL combines sensitivity – thanks to the size of the device – and rapidity – thanks to the control laser - all without having to resort to a complex and expensive cooling system. Completely integrated into a , the system lends itself to numerous possible applications, says Verlot. “ are not the only area in which our system could prove useful. For example, it could also help improve systems – invented in the 1980s by Swiss physicist Christoph Gerber – and, at a more fundamental level, facilitate the observation and measurement of many phenomena.”

Explore further: Simpler process to grow germanium nanowires could improve lithium ion batteries

Related Stories

Eddies in Einstein's formula

Oct 07, 2011

( -- How does a microscopic particle behave in a liquid? New results published in the journal Nature show that Einstein’s formula for describing this situation needs a little adjustment. This w ...

Exploring the sound of string theory

Oct 13, 2011

A new collaboration between physicists and sound artists at Queen Mary, University of London, has produced a sonification of string theory equations. The project is being unveiled at a concert on 5 and 6 November, 2011.

A touchscreen you can really feel (w/ video)

Nov 16, 2011

( -- Swiss researchers have invented a new generation of tactile surfaces with relief effects – users can feel actual raised keys under their fingers. This technology could have many applications, particularly ...

A new motor for the watch of tomorrow

Aug 04, 2011

An electromagnetic three-phase motor, invented by EPFL’s Integrated Actuators Laboratory, will enable the watchmaking industry to build watches that are three times more efficient and that can include ...

Swimming goes high tech with EPFL-developed inertial systems

Feb 01, 2012

Scientists from EPFL's Laboratory of Movement Analysis and Measurement have developed inertial systems, worn in a full-body swimming suit, which can analyse the strengths and weaknesses of elite-level swimmers during workout ...

The perfect connection between guitar and computer

Jul 11, 2011

Guitar virtuosos have to master all kinds of playing techniques. But how can the intricate process of playing the instrument be captured digitally? A special thin film on the tailpiece has the answer. Functioning ...

Recommended for you

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 26, 2012
Wonder if this device can be applied to seismic sensors?
not rated yet Jul 27, 2012
It probably could, but for seismometers you not only need good resolution but also a large dynamic range (from micrometer to centimeter dispalcements). And I'm thinking this technique might not provide that.

But there are certainly a lot of applications for this from quality testing to gas sensors to cheap/embedded structural integrity sensors.