As mushrooms evolve to live symbiotically with trees, they give up parts of their DNA: study

July 18, 2012

Harvard researchers are unlocking the evolutionary secrets of one of the world's most recognizable groups of mushrooms, and to do it, they're using one of the most comprehensive fungal "family trees" ever created.

As reported in paper published July 18 in , Associate Professor of Organismic and Anne Pringle and Ben Wolfe, a Post-Doctoral Fellow in FAS Center for Systems Biology, studied the genetics of more 100 of Amanita mushrooms – about one-sixth of the genus' total diversity – to create an elaborate phylogeny showing how each species is related to one another.

Arguably the most widely-recognized group of mushrooms in the world, Amanita mushrooms have appeared in popular culture ranging from Fantasia to the Super Mario Brothers video games. Though it includes a number of edible species, such as the Amanita caesarea, the group is probably best known for its many toxic species, including the death-cap mushroom.

Armed with their family tree, Pringle and Wolfe were able to determine that Amanita evolution has largely been away from species that help decompose organic material and toward those that live symbiotically on trees and their roots. More interestingly, they found that the transition came at a steep price – the loss of the genes associated with breaking down cellulose.

"There had been earlier suggestions that this type of gene loss might be taking place, but our study is the first precise test of that hypothesis," Pringle said. "The idea makes sense – if you're going to actively form a cooperative relationship with a tree, you probably shouldn't simultaneously be trying to break it apart and eat it. But it's a very tricky dance to form these kinds of tight, cooperative interactions, and I think this work shows there is a cost associated with that. You have to change, you have to commit, and it can become a sort of gilded cage – these mushrooms are very successful, but they're stuck where they are."

In addition to many species which are housed in the Farlow Herbarium, located at the Harvard University Herbaria, Wolfe spent months tracking rare species in far-flung locations like London and Hawaii.

After extracting from the samples, Wolfe used the codes of four different genes to determine how the various species are related to one another. He then used a process called ancestral state reconstruction to show that the mushrooms have switched from being decomposers to being symbiotic with trees only once in their evolutionary history. Once the switched to this new symbiotic lifestyle, they didn't go back to their free-living past.

Ultimately, Pringle said, the paper highlights one reason she finds such symbiotic partnerships "intrinsically interesting" – for all their apparent benefits, the cost can be high.

"I think the really interesting thing is this idea that once you become symbiotic, some of your machinery is lost," she said. "It seems like a dead end in some ways – you have to make this change to enter this niche, but once you're there, you can't go back – you've lost the capacity to be free-living."

Explore further: Genetic technology reveals how poisonous mushrooms cook up toxins

Related Stories

Seven new luminescent mushroom species discovered

October 5, 2009

Seven new glow-in-the-dark mushroom species have been discovered, increasing the number of known luminescent fungi species from 64 to 71. Reported today in the journal Mycologia, the new finds include two new species named ...

Lightning really does make mushrooms multiply

April 13, 2010

(PhysOrg.com) -- Japanese farming folklore has it that lightning makes mushrooms multiply, and new research supports the idea. Mushrooms form a staple part of the diet in Japan, and the fungi are in such high demand that ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.