As mushrooms evolve to live symbiotically with trees, they give up parts of their DNA: study

Jul 18, 2012

Harvard researchers are unlocking the evolutionary secrets of one of the world's most recognizable groups of mushrooms, and to do it, they're using one of the most comprehensive fungal "family trees" ever created.

As reported in paper published July 18 in , Associate Professor of Organismic and Anne Pringle and Ben Wolfe, a Post-Doctoral Fellow in FAS Center for Systems Biology, studied the genetics of more 100 of Amanita mushrooms – about one-sixth of the genus' total diversity – to create an elaborate phylogeny showing how each species is related to one another.

Arguably the most widely-recognized group of mushrooms in the world, Amanita mushrooms have appeared in popular culture ranging from Fantasia to the Super Mario Brothers video games. Though it includes a number of edible species, such as the Amanita caesarea, the group is probably best known for its many toxic species, including the death-cap mushroom.

Armed with their family tree, Pringle and Wolfe were able to determine that Amanita evolution has largely been away from species that help decompose organic material and toward those that live symbiotically on trees and their roots. More interestingly, they found that the transition came at a steep price – the loss of the genes associated with breaking down cellulose.

"There had been earlier suggestions that this type of gene loss might be taking place, but our study is the first precise test of that hypothesis," Pringle said. "The idea makes sense – if you're going to actively form a cooperative relationship with a tree, you probably shouldn't simultaneously be trying to break it apart and eat it. But it's a very tricky dance to form these kinds of tight, cooperative interactions, and I think this work shows there is a cost associated with that. You have to change, you have to commit, and it can become a sort of gilded cage – these mushrooms are very successful, but they're stuck where they are."

In addition to many species which are housed in the Farlow Herbarium, located at the Harvard University Herbaria, Wolfe spent months tracking rare species in far-flung locations like London and Hawaii.

After extracting from the samples, Wolfe used the codes of four different genes to determine how the various species are related to one another. He then used a process called ancestral state reconstruction to show that the mushrooms have switched from being decomposers to being symbiotic with trees only once in their evolutionary history. Once the switched to this new symbiotic lifestyle, they didn't go back to their free-living past.

Ultimately, Pringle said, the paper highlights one reason she finds such symbiotic partnerships "intrinsically interesting" – for all their apparent benefits, the cost can be high.

"I think the really interesting thing is this idea that once you become symbiotic, some of your machinery is lost," she said. "It seems like a dead end in some ways – you have to make this change to enter this niche, but once you're there, you can't go back – you've lost the capacity to be free-living."

Explore further: Danish museum discovers unique gift from Charles Darwin

Related Stories

Seven new luminescent mushroom species discovered

Oct 05, 2009

Seven new glow-in-the-dark mushroom species have been discovered, increasing the number of known luminescent fungi species from 64 to 71. Reported today in the journal Mycologia, the new finds include two ne ...

Lightning really does make mushrooms multiply

Apr 13, 2010

(PhysOrg.com) -- Japanese farming folklore has it that lightning makes mushrooms multiply, and new research supports the idea. Mushrooms form a staple part of the diet in Japan, and the fungi are in such high ...

Recommended for you

Danish museum discovers unique gift from Charles Darwin

23 hours ago

The Natural History Museum of Denmark recently discovered a unique gift from one of the greatest-ever scientists. In 1854, Charles Darwin – father of the theory of evolution – sent a gift to his Danish ...

Top ten reptiles and amphibians benefitting from zoos

Aug 29, 2014

A frog that does not croak, the largest living lizard, and a tortoise that can live up to 100 years are just some of the species staving off extinction thanks to the help of zoos, according to a new report.

User comments : 0