Controlling monkey brains and behavior with light

Jul 26, 2012

Researchers reporting online on July 26 in Current Biology have for the first time shown that they can control the behavior of monkeys by using pulses of blue light to very specifically activate particular brain cells. The findings represent a key advance for optogenetics, a state-of-the-art method for making causal connections between brain activity and behavior. Based on the discovery, the researchers say that similar light-based mind control could likely also be made to work in humans for therapeutic ends.

"We are the first to show that optogenetics can alter the behavior of monkeys," says Wim Vanduffel of Massachusetts General Hospital and KU Leuven Medical School. "This opens the door to use of optogenetics at a large scale in primate research and to start developing optogenetic-based therapies for humans."

In optogenetics, neurons are made to respond to light through the insertion of light-sensitive genes derived from particular microbial organisms. Earlier studies had primarily validated this method for use in invertebrates and rodents, with only a few studies showing that optogenetics can alter activity in monkey brains on a fine scale.

In the new study, the researchers focused on neurons that control particular eye movements. Using optogenetics together with (fMRI), they showed that they could use light to activate these neurons, generating and subtle changes in eye-movement behavior.

The researchers also found that optogenetic stimulation of their focal brain region produced changes in the activity of specific neural networks located at some distance from the primary site of light activation.

The findings not only pave the way for a much more detailed understanding of how different parts of the brain control behavior, but they may also have important clinical applications in treating Parkinson's disease, addiction, depression, obsessive-compulsive disorder, and other .

"Several neurological disorders can be attributed to the malfunctioning of specific cell types in very specific ," Vanduffel says. "As already suggested by one of the leading researchers in optogenetics, Karl Deisseroth from Stanford University, it is important to identify the underlying neuronal circuits and the precise nature of the aberrations that lead to the neurological disorders and potentially to manipulate those malfunctioning circuits with high precision to restore them. The beauty of optogenetics is that, unlike any other method, one can affect the activity of very specific cell types, leaving others untouched."

Explore further: Video: Research is revealing more about what it takes to truly swim like a fish

More information: Gerits et al.: "Optogenetically-induced behavioral and functional network changes in primates." DOI:10.1016/j.cub.2012.07.023

Related Stories

Controlling brain circuits with light

May 03, 2011

F1000 Biology Reports, the open-access, peer-reviewed journal from Faculty of 1000, today published a historical account of the beginnings of the optogenetic revolution by Edward Boyden.

At the forefront of optogenetics

May 24, 2011

(Medical Xpress) -- In the last couple of years scientists from the Friedrich Miescher Institute for Biomedical Research have developed new strategies to stimulate individual brain cells with light. Optogenetic ...

Researchers validate, extend fMRI research on brain activity

May 16, 2010

Like a motorist who knows that the "check engine" light indicates something important but ill-defined is happening, neuroscientists have relied heavily on an incompletely understood technology called functional magnetic resonance ...

Recommended for you

Lemurs match scent of a friend to sound of her voice

8 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

Love-shy panda artificially inseminated

18 hours ago

Britain's only female giant panda, Tian Tian, has been artificially inseminated after failing to mate with her male partner Yang Guang, Edinburgh Zoo said Tuesday.

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.