Building molecular 'cages' to fight disease

July 5, 2012

(Phys.org) -- Researchers at the University of Washington in Seattle and the University of California, Los Angeles (UCLA) have developed a computational approach to designing specialized proteins that assemble themselves to form nanoparticle cages that can be used to deliver drugs to tumors and other sites of disease. Published in the journal Science, this research could be utilized to create nanoparticle cages from any number of different proteins, with potential applications across the fields of medicine and molecular biology.

UCLA investigator David Yeates led this study. He and his colleagues used computer models to identify two proteins that could be combined to form perfectly-shaped three-dimensional puzzle pieces. Twelve of these specialized pieces fit together to create a molecular cage a mere fraction of the size of a virus.

The specifically designed proteins intermesh to form a hollow lattice that could act as a vessel for drug delivery. In principle, it would be possible to attach a recognition sequence for on the outside of the cage together with a . As currently designed, the assembled protein cages are porous enough that a drug placed inside would likely leak out during the delivery process. The investigators are now conducting computer modeling studies to design a new molecular cage with an interior that will be better sealed.

In a second paper that was also published in Science, Dr. Yeates and University of Washington colleague David Baker describe how they created similarly designed molecular cages using multiple copies of the same protein as building blocks. The scientists control the shape of the cage by computing the sequence of amino acids necessary to link the proteins together at the correct angles. This alternative method represents a more versatile approach in theory because it requires only one type of protein to form a structure, Dr. Yeates said.

This work is described in two papers titled, "Structure of a 16-nm cage designed by using protein oligomers," and "Computational design of self-assembling protein nanomaterials with atomic level accuracy." Abstracts of these papers are available at the journal's website.

Explore further: Protein Cage Helps Nanoparticles Target Tumors

Related Stories

Protein Cage Helps Nanoparticles Target Tumors

January 17, 2007

Researchers at Montana State University have used an engineered form of ferritin, a cage-like iron storage protein, to both synthesize and deliver iron oxide nanoparticles to tumors. The investigators, led by Trevor Douglas, ...

'Transformer' protein makes different sized transport pods

May 25, 2012

These spheres may look almost identical, but subtle differences between them revealed a molecular version of the robots from Transformers. Each sphere is a vesicle, a pod that cells use to transport materials between different ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.