Shear layers in solar winds affect Earth's magnetosphere

July 31, 2012

Human society is increasingly reliant on technology that can be disrupted by space weather. For instance, geomagnetic storms can cause high-latitude air flights to be rerouted, costing as much as $100,000 per flight; induce errors of up to 46 meters (151 feet) in GPS systems; and affect satellites and the International Space Station. Space weather is determined by how the solar wind, a stream of hot plasma from the Sun, interacts with Earth’s magnetic field. In studying space weather, scientists have largely neglected the fact that the solar wind contains layers of very strong velocity shear. Scientists understand very little about how these wind shears affect space weather.

Combining statistical analysis of solar wind data from the Advanced Composition Explorersatellite, which measures solar particles approaching Earth, with a series of magnetohydrodynamic simulations, used to model the behavior of the Earth’s magnetosphere, Borovsky characterizes the properties of the shear layers that travel past the Earth and the reaction of the Earth to those passing layers.

The author finds that as many as 60 of these shear zones can pass by Earth each day at velocities above 50 kilometers per second (31 miles per second). Passage of a shear layer perturbs the entire magnetosphere and ionosphere, which could produce a comet-like disconnection of the Earth’s magnetotail (the tail-like extension of Earth’s magnetic field on the side facing away from the Sun). Although the velocity shears will not cause a geomagnetic storm, they may determine how such a storm works. Hence, the author recommends several follow-up studies of the reaction of Earth to sudden wind shear.

Explore further: Geomagnetic storm subsiding

More information: “The effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections” Journal of Geophysical Research-Space Physics, doi:10.1029/2012JA017623 , 2012

Related Stories

Geomagnetic storm subsiding

April 14, 2011

A geomagnetic storm that sparked auroras around the Arctic Circle and sent Northern Lights spilling over the Canadian border into the United States on April 12, 2011 is subsiding. NOAA forecasters estimate a 25% chance of ...

Solar storm heading our way

August 4, 2011

Early yesterday, (Aug 3, 2011) two active regions on the Sun, sunspot 1261 and 1263 unleashed solar flares, which was captured by NASA’s Solar Dynamics Observatory. The video shows an M6 class flare from 1261 in a couple ...

ESA To Collaborate with NASA on Solar Science Mission

October 6, 2011

On October 4, 2011, the European Space Agency announced it's two next science missions, including Solar Orbiter, a spacecraft geared to study the powerful influence of the sun. Solar Orbiter will be an ESA-led mission, with ...

Storms from the sun

March 9, 2012

(PhysOrg.com) -- Space weather starts at the sun. It begins with an eruption such as a huge burst of light and radiation called a solar flare or a gigantic cloud of solar material called a coronal mass ejection (CME). But ...

Huge coronal hole is sending solar wind our way

March 14, 2012

An enormous triangular hole in the Sun’s corona was captured earlier today by NASA’s Solar Dynamics Observatory, seen above from the AIA 211 imaging assembly. This gap in the Sun’s atmosphere is allowing more ...

Recommended for you

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

Quantifying the impact of volcanic eruptions on climate

August 31, 2015

Large volcanic eruptions inject considerable amounts of sulphur in the stratosphere which, once converted into aerosols, block sun rays and tend to cool the surface of the Earth down for several years. An international team ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (1) Aug 01, 2012
geomagnetic storms can cause high-latitude air flights to be rerouted, costing as much as $100,000 per flight

That seems to be a little excessive. I just googled the airborne cost of a 747-400, and that comes out to between 6000 and 7000 dollars per hour. I hardly think that even the most circuitous rerouting will add 13-16 hours of flight time.

Maybe they're off by a zero there at the end.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.