Lace plants explain programmed cell death

Jul 24, 2012

Programmed cell death (PCD) is a highly regulated process that occurs in all animals and plants as part of normal development and in response to the environment. New research published in BioMed Central's open access journal BMC Plant Biology is the first to document the physiological events in the lace plant (Aponogeton madagascariensis) which occur via PCD to produce the characteristic holes in its leaves.

The aquatic lace plant, endemic to Madagascar, uses PCD to generate holes in its leaves. Researchers from Dalhousie University, Nova Scotia, used long-term live , time-lapse micro-photography and detailed staining to see what actually happens inside individual cells of the lace plant leaves during this process.

PCD always begins in the centre of areoles (areas surrounded by veins) and works its way out, finally stopping four or five cells away from the vein. Within these areoles the stage of PCD can be visually determined by pigmentation. Non-PCD cells contain anthocyanin which is pink. As PCD progresses (early-PCD) the anthocyanin disappears but green chlorophyll remains. By late-PCD, both of these pigments have been lost.

Arunika Gunawardena, who led this research, described what actually happens in more detail, "After the loss of , we saw a reduction in the number and size of chloroplasts concurrent with changes in the , which normally supports the cell from the inside. Actin cables became thicker, but their arrangement became more haphazard (until late-PCD when they began to disappear)."

As PCD progressed chloroplasts and mitochondria (the energy centres of the cell) began to aggregate together and were brought into the acidic vacuole to be degraded - a process that was confirmed using 3D image analysis. Additionally, the researchers found evidence of (where the cells literally begin to 'eat' themselves from the inside) and discovered organelle-like remnants inside vesicles.

Dr Gunawardena continued, "For each cell we observed, eventually the tonoplast ruptured, and the plasma membrane surrounding the cell collapsed. It only takes 48 hours from the first noticeable loss in chlorophyll until the plasma membrane shrinks, and by 24 hours after this event the cell wall disappears."

This is the first research to use such a variety of visual techniques to look at a process that affects almost every cell type at some stage of an organism's life. These pictures and videos provide a fascinating insight into how the lace plant has high-jacked PCD to produce its quirky, yet beautiful, leaves.

Explore further: Researchers discover new mechanism of DNA repair

More information: The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves Jaime Wertman, Christina EN Lord, Adrian N Dauphinee and Arunika HLAN Gunawardena BMC Plant Biology (in press)

Related Stories

Plant Sacrifices Cells to Fight Invaders

May 20, 2005

Gene ensures programmed cell suicide does not go unchecked Researchers recently discovered a gene essential to one of the plant kingdom's key immune responses--programmed cell death (PCD). Plants use PC ...

Fungi's genetic sabotage in wheat discovered

Jul 13, 2010

Using molecular techniques, Agricultural Research Service (ARS) and collaborating scientists have shown how the subversion of a single gene in wheat by two fungal foes triggers a kind of cellular suicide in the grain crop's ...

Suicide: unexpected coral killer

Mar 20, 2007

A mysterious disease is causing the corals of the Great Barrier Reef to kill themselves - and scientists are battling to find out why.

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.