Lace plants explain programmed cell death

Jul 24, 2012

Programmed cell death (PCD) is a highly regulated process that occurs in all animals and plants as part of normal development and in response to the environment. New research published in BioMed Central's open access journal BMC Plant Biology is the first to document the physiological events in the lace plant (Aponogeton madagascariensis) which occur via PCD to produce the characteristic holes in its leaves.

The aquatic lace plant, endemic to Madagascar, uses PCD to generate holes in its leaves. Researchers from Dalhousie University, Nova Scotia, used long-term live , time-lapse micro-photography and detailed staining to see what actually happens inside individual cells of the lace plant leaves during this process.

PCD always begins in the centre of areoles (areas surrounded by veins) and works its way out, finally stopping four or five cells away from the vein. Within these areoles the stage of PCD can be visually determined by pigmentation. Non-PCD cells contain anthocyanin which is pink. As PCD progresses (early-PCD) the anthocyanin disappears but green chlorophyll remains. By late-PCD, both of these pigments have been lost.

Arunika Gunawardena, who led this research, described what actually happens in more detail, "After the loss of , we saw a reduction in the number and size of chloroplasts concurrent with changes in the , which normally supports the cell from the inside. Actin cables became thicker, but their arrangement became more haphazard (until late-PCD when they began to disappear)."

As PCD progressed chloroplasts and mitochondria (the energy centres of the cell) began to aggregate together and were brought into the acidic vacuole to be degraded - a process that was confirmed using 3D image analysis. Additionally, the researchers found evidence of (where the cells literally begin to 'eat' themselves from the inside) and discovered organelle-like remnants inside vesicles.

Dr Gunawardena continued, "For each cell we observed, eventually the tonoplast ruptured, and the plasma membrane surrounding the cell collapsed. It only takes 48 hours from the first noticeable loss in chlorophyll until the plasma membrane shrinks, and by 24 hours after this event the cell wall disappears."

This is the first research to use such a variety of visual techniques to look at a process that affects almost every cell type at some stage of an organism's life. These pictures and videos provide a fascinating insight into how the lace plant has high-jacked PCD to produce its quirky, yet beautiful, leaves.

Explore further: DNA may have had humble beginnings as nutrient carrier

More information: The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves Jaime Wertman, Christina EN Lord, Adrian N Dauphinee and Arunika HLAN Gunawardena BMC Plant Biology (in press)

Related Stories

Plant Sacrifices Cells to Fight Invaders

May 20, 2005

Gene ensures programmed cell suicide does not go unchecked Researchers recently discovered a gene essential to one of the plant kingdom's key immune responses--programmed cell death (PCD). Plants use PC ...

Fungi's genetic sabotage in wheat discovered

Jul 13, 2010

Using molecular techniques, Agricultural Research Service (ARS) and collaborating scientists have shown how the subversion of a single gene in wheat by two fungal foes triggers a kind of cellular suicide in the grain crop's ...

Suicide: unexpected coral killer

Mar 20, 2007

A mysterious disease is causing the corals of the Great Barrier Reef to kill themselves - and scientists are battling to find out why.

Recommended for you

Research helps identify memory molecules

7 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

8 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

8 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0