IU partnership results in faster Trinity RNA sequencing software

July 18, 2012

Key software used to study gene expression now runs four times faster, thanks to performance improvements put in place by a team from the Indiana University Pervasive Technology Institute (PTI), the Broad Institute of MIT and Harvard and Technische Universität Dresden.

The timesaving breakthroughs will allow bioinformaticians and biologists who study RNA sequences to analyze more data in a shorter amount of time. This will speed the understanding of biological processes in fields as diverse as ecology, evolution, biofuels and medicine.

Robert Henschel and Richard D. LeDuc, of PTI and IU's National Center for Genome Analysis Support (NCGAS), announced the findings today at the XSEDE12 conference in Chicago. Henschel and LeDuc, along with partners from the Broad Institute and the Center for Information Services and High Performance Computing (ZIH) at Technische Universität Dresden, teamed up to announce this advance in a fast-growing area of computational biology.

The software, known as Trinity, was developed by researchers at the Broad Institute and Hebrew University. It produces high-quality RNA sequence assemblies used by scientists studying . These RNA sequence assemblies allow scientists to know which genes are active within a living creature. Trinity is especially useful for studying organisms without a complete genome sequence, such as agricultural pests, ecological indicator species and human parasites.

The software has long been considered a leader in the field, but it needed some finetuning.

"IU research technologists strive to deliver tools and services that accelerate discoveries for scientists all over the world. By collaborating with our counterparts at Broad and ZIH, we were able to do just that with Trinity. This is just one example of how the various centers affiliated with PTI—such as NCGAS—improve the capabilities of scientists at home and abroad," said Craig Stewart, executive director of IU's Pervasive Technology Institute and principal investigator of the National Science Foundation grant that funds NCGAS.

"In the past, Trinity was a high quality tool but the run time was too long," said Henschel. "Now with our performance improvements, it runs as fast as the competition—if not faster—and still produces superior quality sequence assemblies."

The partners first used standard high performance computing techniques to improve the software's speed. Specifically, this involved building Trinity with an optimizing compiler for the Intel® Xeon® architecture and using optimizing compiler flags. In addition, the team properly configured the application to take full advantage of multicore, multisocket compute nodes in today's clusters.

Next, the team finetuned each part of the Trinity package to improve the overall scalability of the application. They used Vampir performance analysis tools, developed at ZIH, to gain insights into the software's performance. The optimizations included improving and parallelizing input/output, simplifying data structures for better performance and optimizing parallel regions in the application.

Henschel is hopeful that IU's work with Trinity will continue. "We are working on establishing a continued collaboration between IU, Broad and ZIH to further optimize Trinity," said Henschel. "We hope these improvements are just the beginning of a longer term relationship that will continue to benefit biological research."

Explore further: Red Flag Delivers First Commercial Version Of Linux Compiled With Intel Compiler

More information: www.xsede.org/

Related Stories

Intel Upgrades Software Tools to Support Mac OS X Leopard

November 28, 2007

Intel Corporation today announced an upgrade of its popular software tools suite for Mac OS X Leopard, the sixth major version of Apple's advanced operating system. The latest 10.1 version of the Intel C++ Compiler and Intel ...

New project to create 'FutureGrid' computer network

September 29, 2009

The San Diego Supercomputer Center at UC San Diego is part of a team chosen by the National Science Foundation to build and run an experimental high-performance grid test-bed, allowing researchers to collaboratively develop ...

AMD's Trinity is out to rattle Intel's Ivy Bridge

May 15, 2012

(Phys.org) -- AMD has announced Trinity, its second-generation A-Series accelerated processing units (APUs), which are out to rival Intel’s Ivy Bridge processors. AMD’s Trinity is an update to its Llano, which attempted ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.