IU partnership results in faster Trinity RNA sequencing software

Jul 18, 2012

Key software used to study gene expression now runs four times faster, thanks to performance improvements put in place by a team from the Indiana University Pervasive Technology Institute (PTI), the Broad Institute of MIT and Harvard and Technische Universität Dresden.

The timesaving breakthroughs will allow bioinformaticians and biologists who study RNA sequences to analyze more data in a shorter amount of time. This will speed the understanding of biological processes in fields as diverse as ecology, evolution, biofuels and medicine.

Robert Henschel and Richard D. LeDuc, of PTI and IU's National Center for Genome Analysis Support (NCGAS), announced the findings today at the XSEDE12 conference in Chicago. Henschel and LeDuc, along with partners from the Broad Institute and the Center for Information Services and High Performance Computing (ZIH) at Technische Universität Dresden, teamed up to announce this advance in a fast-growing area of computational biology.

The software, known as Trinity, was developed by researchers at the Broad Institute and Hebrew University. It produces high-quality RNA sequence assemblies used by scientists studying . These RNA sequence assemblies allow scientists to know which genes are active within a living creature. Trinity is especially useful for studying organisms without a complete genome sequence, such as agricultural pests, ecological indicator species and human parasites.

The software has long been considered a leader in the field, but it needed some finetuning.

"IU research technologists strive to deliver tools and services that accelerate discoveries for scientists all over the world. By collaborating with our counterparts at Broad and ZIH, we were able to do just that with Trinity. This is just one example of how the various centers affiliated with PTI—such as NCGAS—improve the capabilities of scientists at home and abroad," said Craig Stewart, executive director of IU's Pervasive Technology Institute and principal investigator of the National Science Foundation grant that funds NCGAS.

"In the past, Trinity was a high quality tool but the run time was too long," said Henschel. "Now with our performance improvements, it runs as fast as the competition—if not faster—and still produces superior quality sequence assemblies."

The partners first used standard high performance computing techniques to improve the software's speed. Specifically, this involved building Trinity with an optimizing compiler for the Intel® Xeon® architecture and using optimizing compiler flags. In addition, the team properly configured the application to take full advantage of multicore, multisocket compute nodes in today's clusters.

Next, the team finetuned each part of the Trinity package to improve the overall scalability of the application. They used Vampir performance analysis tools, developed at ZIH, to gain insights into the software's performance. The optimizations included improving and parallelizing input/output, simplifying data structures for better performance and optimizing parallel regions in the application.

Henschel is hopeful that IU's work with Trinity will continue. "We are working on establishing a continued collaboration between IU, Broad and ZIH to further optimize Trinity," said Henschel. "We hope these improvements are just the beginning of a longer term relationship that will continue to benefit biological research."

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: www.xsede.org/

Related Stories

AMD's Trinity is out to rattle Intel's Ivy Bridge

May 15, 2012

(Phys.org) -- AMD has announced Trinity, its second-generation A-Series accelerated processing units (APUs), which are out to rival Intel’s Ivy Bridge processors. AMD’s Trinity is an update to its ...

New project to create 'FutureGrid' computer network

Sep 29, 2009

The San Diego Supercomputer Center at UC San Diego is part of a team chosen by the National Science Foundation to build and run an experimental high-performance grid test-bed, allowing researchers to collaboratively develop ...

Intel Upgrades Software Tools to Support Mac OS X Leopard

Nov 28, 2007

Intel Corporation today announced an upgrade of its popular software tools suite for Mac OS X Leopard, the sixth major version of Apple's advanced operating system. The latest 10.1 version of the Intel C++ Compiler and Intel ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.