IU partnership results in faster Trinity RNA sequencing software

July 18, 2012

Key software used to study gene expression now runs four times faster, thanks to performance improvements put in place by a team from the Indiana University Pervasive Technology Institute (PTI), the Broad Institute of MIT and Harvard and Technische Universität Dresden.

The timesaving breakthroughs will allow bioinformaticians and biologists who study RNA sequences to analyze more data in a shorter amount of time. This will speed the understanding of biological processes in fields as diverse as ecology, evolution, biofuels and medicine.

Robert Henschel and Richard D. LeDuc, of PTI and IU's National Center for Genome Analysis Support (NCGAS), announced the findings today at the XSEDE12 conference in Chicago. Henschel and LeDuc, along with partners from the Broad Institute and the Center for Information Services and High Performance Computing (ZIH) at Technische Universität Dresden, teamed up to announce this advance in a fast-growing area of computational biology.

The software, known as Trinity, was developed by researchers at the Broad Institute and Hebrew University. It produces high-quality RNA sequence assemblies used by scientists studying . These RNA sequence assemblies allow scientists to know which genes are active within a living creature. Trinity is especially useful for studying organisms without a complete genome sequence, such as agricultural pests, ecological indicator species and human parasites.

The software has long been considered a leader in the field, but it needed some finetuning.

"IU research technologists strive to deliver tools and services that accelerate discoveries for scientists all over the world. By collaborating with our counterparts at Broad and ZIH, we were able to do just that with Trinity. This is just one example of how the various centers affiliated with PTI—such as NCGAS—improve the capabilities of scientists at home and abroad," said Craig Stewart, executive director of IU's Pervasive Technology Institute and principal investigator of the National Science Foundation grant that funds NCGAS.

"In the past, Trinity was a high quality tool but the run time was too long," said Henschel. "Now with our performance improvements, it runs as fast as the competition—if not faster—and still produces superior quality sequence assemblies."

The partners first used standard high performance computing techniques to improve the software's speed. Specifically, this involved building Trinity with an optimizing compiler for the Intel® Xeon® architecture and using optimizing compiler flags. In addition, the team properly configured the application to take full advantage of multicore, multisocket compute nodes in today's clusters.

Next, the team finetuned each part of the Trinity package to improve the overall scalability of the application. They used Vampir performance analysis tools, developed at ZIH, to gain insights into the software's performance. The optimizations included improving and parallelizing input/output, simplifying data structures for better performance and optimizing parallel regions in the application.

Henschel is hopeful that IU's work with Trinity will continue. "We are working on establishing a continued collaboration between IU, Broad and ZIH to further optimize Trinity," said Henschel. "We hope these improvements are just the beginning of a longer term relationship that will continue to benefit biological research."

Explore further: AMD's Trinity is out to rattle Intel's Ivy Bridge

More information: www.xsede.org/

Related Stories

AMD's Trinity is out to rattle Intel's Ivy Bridge

May 15, 2012

(Phys.org) -- AMD has announced Trinity, its second-generation A-Series accelerated processing units (APUs), which are out to rival Intel’s Ivy Bridge processors. AMD’s Trinity is an update to its Llano, which attempted ...

New project to create 'FutureGrid' computer network

September 29, 2009

The San Diego Supercomputer Center at UC San Diego is part of a team chosen by the National Science Foundation to build and run an experimental high-performance grid test-bed, allowing researchers to collaboratively develop ...

Intel Upgrades Software Tools to Support Mac OS X Leopard

November 28, 2007

Intel Corporation today announced an upgrade of its popular software tools suite for Mac OS X Leopard, the sixth major version of Apple's advanced operating system. The latest 10.1 version of the Intel C++ Compiler and Intel ...

Recommended for you

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

An anti-CRISPR for gene editing

December 8, 2016

Researchers have discovered a way to program cells to inhibit CRISPR-Cas9 activity. "Anti-CRISPR" proteins had previously been isolated from viruses that infect bacteria, but now University of Toronto and University of Massachusetts ...

The song of silence

December 8, 2016

Like humans learning to speak, juvenile birds learn to sing by mimicking vocalizations of adults of the same species during development. Juvenile birds preferentially learn the song of their own species, even in noisy environments ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.