Hollow iron oxide nanoparticles for lithium-ion battery applications

Jul 20, 2012
Transmission electron micrograph of hollow iron oxide nanoparticles.

Novel hollow iron oxide nanoparticles with a high concentration of defects were synthesized by Center for Nanoscale Materials (CNM) facility users from Argonne's Chemical Sciences & Engineering Division and Advanced Photon Source (APS), and the University of Chicago, working collaboratively with the CNM NanoBio Interfaces Group. A new concept of electrode fabrication based on sealing nanoparticles between layers of pure carbon nanotubes was also developed. When this novel electrode was used as a cathode, the inherent iron vacancies allowed for significantly increased performance in a lithium-ion battery.

Conventional nanoparticle-based electrodes fade quickly because of poor connectivity between the nanoparticles and the current collector. The new electrodes allow for reversible lithium-ion intercalation, which resulted in high capacity and efficiency, superior rate performance, and excellent stability (no fading over more than 500 cycles). This result demonstrates that nanomaterial morphology is critical to lithium-ion battery development.

Schematic of electrode consisting of hollow iron oxide nanoparticles sealed between carbon nanotube films.

At the CNM, hollow gamma-Fe2O3 nanoparticles were synthesized with four times more cation vacancies than solid nanoparticles or bulk material. Novel electrode fabrication involved sealing the nanoparticles between layers of pure multiwalled carbon nanotubes without binders or additives. Electrochemical studies revealed high capacity (132 mAh/g at 2.5V), 99.7% Coulombic efficiency, superior rate performance (133 mAh/g at 3000 mA/g), and excellent stability. At the APS, in situ structural transformation of the nanoparticles by synchrotron X-ray absorption and diffraction techniques provided a clear understanding of lithium processes during electrochemical cycling.

Explore further: New 'designer carbon' boosts battery performance

More information: B. Koo et al., "Hollow iron oxide nanoparticles for application in lithium ion batteries," Nano Letters,12, 2429 (2012)

Related Stories

Recommended for you

New 'designer carbon' boosts battery performance

22 hours ago

Stanford University scientists have created a new carbon material that significantly boosts the performance of energy-storage technologies. Their results are featured on the cover of the journal ACS Central Sc ...

Self-replicating nanostructures made from DNA

May 28, 2015

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Could computers reach light speed?

May 28, 2015

Light waves trapped on a metal's surface travel nearly as fast as light through the air, and new research at Pacific Northwest National Laboratory shows these waves, called surface plasmons, travel far enough ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.