Hollow iron oxide nanoparticles for lithium-ion battery applications

Jul 20, 2012
Transmission electron micrograph of hollow iron oxide nanoparticles.

Novel hollow iron oxide nanoparticles with a high concentration of defects were synthesized by Center for Nanoscale Materials (CNM) facility users from Argonne's Chemical Sciences & Engineering Division and Advanced Photon Source (APS), and the University of Chicago, working collaboratively with the CNM NanoBio Interfaces Group. A new concept of electrode fabrication based on sealing nanoparticles between layers of pure carbon nanotubes was also developed. When this novel electrode was used as a cathode, the inherent iron vacancies allowed for significantly increased performance in a lithium-ion battery.

Conventional nanoparticle-based electrodes fade quickly because of poor connectivity between the nanoparticles and the current collector. The new electrodes allow for reversible lithium-ion intercalation, which resulted in high capacity and efficiency, superior rate performance, and excellent stability (no fading over more than 500 cycles). This result demonstrates that nanomaterial morphology is critical to lithium-ion battery development.

Schematic of electrode consisting of hollow iron oxide nanoparticles sealed between carbon nanotube films.

At the CNM, hollow gamma-Fe2O3 nanoparticles were synthesized with four times more cation vacancies than solid nanoparticles or bulk material. Novel electrode fabrication involved sealing the nanoparticles between layers of pure multiwalled carbon nanotubes without binders or additives. Electrochemical studies revealed high capacity (132 mAh/g at 2.5V), 99.7% Coulombic efficiency, superior rate performance (133 mAh/g at 3000 mA/g), and excellent stability. At the APS, in situ structural transformation of the nanoparticles by synchrotron X-ray absorption and diffraction techniques provided a clear understanding of lithium processes during electrochemical cycling.

Explore further: Scientists fabricate defect-free graphene, set record reversible capacity for Co3O4 anode in Li-ion batteries

More information: B. Koo et al., "Hollow iron oxide nanoparticles for application in lithium ion batteries," Nano Letters,12, 2429 (2012)

Related Stories

Recommended for you

Copper shines as flexible conductor

23 hours ago

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

Aug 22, 2014

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0