Turning glass into clay

Jul 06, 2012
Turning glass into clay
Credit: Thinkstock

The magic mineral and microbial processes that transform volcanic glass into clay have been identified, adding important knowledge to how clay is formed.

Clay is a fascinating natural substance incorporating minerals, and organic matter that could be of value in environmental and industrial applications. As in-depth information about this complex material and mineral-microbe interaction is lacking, the EU-funded project 'Bio-clays from several water media' (BIO-CLAYS) sought to increase the relevant knowledge base. The project investigated how and microorganisms affect clay formation in spring water, fresh water, seawater and very salty water.

BIO-CLAYS conducted a series of experiments on clay formation which involved adding or removing microbial elements and increasing or removing sunlight. It undertook tests related to and microbial development which displayed outstanding results with respect to of volcanic glass. The project team successfully isolated about 40 species of algae, fungi and bacteria to understand growth of microbial colonies, improving the effect of biological experiments.

BIO-CLAYS found that the composition of the glass is more important than water chemistry in controlling the type of clay formed. Another valuable observation revealed how microbial action encapsulated glass in a mat of microbes and generated specific chemical conditions to produce clay. Perhaps the most crucial finding was that microbial action did not accelerate clay formation in general, with the exception of reactions in very salty water.

Overall, the project successfully identified the clays formed and the effect water chemistry and biological factors had on the early stages of clay formation. This helps scientists in researching geo-microbiology and conducting experiments with surface reaction studies. The results improve knowledge of mineral transformation and mineral-microbe interaction, with notable implications for industrial and environmental applications worldwide.

Explore further: Proteins: New class of materials discovered

add to favorites email to friend print save as pdf

Related Stories

New analysis of clay deposits in ancient Martian Lakes

Mar 16, 2012

Mars was once a much wetter world than it is now, with hot springs, rivers, lakes and perhaps even oceans. Just how wet exactly, and for how long, is still a subject of considerable debate. One vital clue ...

Clean drinking water for everyone

May 01, 2012

Nearly 80 percent of disease in developing countries is linked to bad water and sanitation. Now a scientist at Michigan Technological University has developed a simple, cheap way to make water safe to drink, even if it’s ...

Recovering water from tailings ponds

May 29, 2012

(Phys.org) -- As Alberta faces increasing pressure to make the oil industry more sustainable, one University of Alberta researcher may have found a natural solution to a problem that has been plaguing oil companies for years.

Recommended for you

Proteins: New class of materials discovered

2 hours ago

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

22 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

Aug 21, 2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0