Giraffes are living proof that cells' pressure matters

July 3, 2012

Physicists from the Curie Institute, France, explored the relative impact of the mechanical pressure induced by dividing cells in biological tissues. This approach complements traditional studies on genetic and biochemical signalling mechanisms to explain experimental observations of how biological tissues evolve. This work, recently published in European Physical Journal E, could have significant implications for the understanding of cancer growth.

Jonas Ranft and team created a two-component mathematical model accounting for both the cells and the fluid caught in between. On the one hand, cells are modelled as behaving like a dividing fluid subject to expansion. On the other hand, the interstitial fluid is akin to an ideal fluid that cannot be compressed. This model is designed to elucidate the nature of exerted upon dividing cells by their surrounding tissues, referred to as homeostatic pressure.

It replaces a previous single-component model they developed last year. Its assumption: the homeostatic pressure is proportional to the fluid pressure within the tissue. If that were the case, very tall organisms such as giraffes could not exist, because the cells in their lower body would die under pressure.

Thanks to the two-component model, the authors found that it is the cells' pressure and not the interstitial fluid's pressure that influences the level of cell division. When there are as many new cells created from cell division as cells dying from programmed cell death, or apoptosis, the homeostatic pressure is balanced. This leads to a steady state of the . Going one step further, the authors pinpointed the range of fluid pressure required to drive cell flow within the body.

Such models could help gain a greater understanding of the importance of the disruption of homeostatic pressure in biological tissues caused by that are characterised by abnormal levels of .

Explore further: Study resolves debate on human cell shut-down process

More information: Ranft J, Prost J, Jülicher F, Joanny FJ (2012), Tissue dynamics with permeation, European Physical Journal E 35: 46, DOI 10.1140/epje/i2012-12046-5

Related Stories

Make or break for cellular tissues

May 16, 2012

In a study about to be published in the European Physical Journal E, French physicists from the Curie Institute in Paris have demonstrated that the behaviour of a thin layer of cells in contact with an unfavourable substrate ...

Recommended for you

A 'magical' space-time ripple that wasn't believed, at first

February 11, 2016

The wave that made history snuck up on them. David Shoemaker will never forget the date—September 14, 2015—when he woke up to a message alerting him that an underground detector had spotted a 1.3-billion-year-old ripple ...

Sneezing produces complex fluid cascade, not a simple spray

February 11, 2016

Here's some incentive to cover your mouth the next time you sneeze: New high-speed videos captured by MIT researchers show that as a person sneezes, they launch a sheet of fluid that balloons, then breaks apart in long filaments ...

Superconductors could detect superlight dark matter

February 9, 2016

(Phys.org)—Many experiments are currently searching for dark matter—the invisible substance that scientists know exists only from its gravitational effect on stars, galaxies, and other objects made of ordinary matter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.