Beating the fuel prices: Using yeast for economic production of bioethanol

Jul 17, 2012

Finding renewable and economic sources of energy are one of the most important concerns for the continuation of the human species. New research, published in BioMed Central's open access journal Biotechnology for Biofuels, has produced a novel strain of yeast with improved xylose tolerance and metabolism, and consequently improved ethanol production.

is considered one of cleanest renewable replacements for fossil fuel. However using glucose from crops, such as sugar cane or starch crops, uses up resources which could otherwise be used to produce food. Xylose is the second most abundant sugar in plants (after glucose) and is plentiful in agricultural and wood waste. However the yeast which are most efficient at producing ethanol cannot ferment pentose sugars, such as xylose, and yeast which can ferment xylose are not very good at producing ethanol.

Researchers from Ngee Ann Polytechnic, Singapore, used the process of gene shuffling to integrate the genomes of xylose tolerant P. stipitis and the glucose loving, ethanol tolerant (but xylose intolerant) S. cerevisiae. In the first round of shuffling the P. stipitis genome was transferred into S. cerevisiae. Recombinant strains were selected for their ability to grow on xylose and then for their ability to produce ethanol. In a second round of gene shuffling the S. cerevisiae genome was transferred into the best of these strains and the resulting strains tested for ethanol tolerance.

Anli Geng who led this study explained, "We produced a hybrid yeast, capable of producing bioethanol from xylose, which was also able to survive in high concentrations of ethanol. The main by-product of xylose fermentation was xylitol and by measuring this, along with , we found that our hybrid was more efficient at using xylose and in producing ethanol than either of the parent strains. This yeast is only a prototype and further improvement is possible before scale up. However our results show that there is a future in recycling waste vegetation into bioethanol."

Explore further: The blood preserved in the pumpkin did not belong to Louis XVI

More information: Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method, Wei Zhang and Anli Geng, Biotechnology for Biofuels (in press)

add to favorites email to friend print save as pdf

Related Stories

Wine-making yeast shows promise for bioethanol production

May 13, 2010

Researchers from the Stanford University School of Medicine have identified a gene in the yeast Saccharomyces cerevisiae that might be important for ethanol production from plant material, providing insights into the bioeth ...

Novel gene increases yeast's appetite for plant sugars

Jul 25, 2011

For thousands of years, bakers and brewers have relied on yeast to convert sugar into alcohol and carbon dioxide. Yet, University of Wisconsin-Madison researchers eager to harness this talent for brewing biofuels have found ...

Super-fermenting fungus genome sequenced

Mar 05, 2007

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization ...

Recommended for you

Genetic code of the deadly tsetse fly unraveled

15 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Engineered E. coli produces high levels of D-ribose

16 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic legacy of rare dwarf trees is widespread

Researchers from Queen Mary University of London have found genetic evidence that one of Britain's native tree species, the dwarf birch found in the Scottish Highlands, was once common in England.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.