To extinguish a hot flame, DARPA studied cold plasma

Jul 12, 2012
Fire in enclosed military environments such as ship holds, aircraft cockpits and ground vehicles is a major cause of material destruction and jeopardizes the lives of warfighters. Credit: DARPA

DARPA theorized that by using physics techniques rather than combustion chemistry, it might be possible to manipulate and extinguish flames. To achieve this, new research was required to understand and quantify the interaction of electromagnetic and acoustic waves with the plasma in a flame.

Fire in enclosed military environments such as ship holds, aircraft cockpits and is a major cause of material destruction and jeopardizes the lives of warfighters. For example, a shipboard fire on the aircraft carrier USS George Washington in May 2008 burned for 12 hours and caused an estimated $70 million in damage. For nearly 50 years, despite the severity of the threat from fire, no new methods for extinguishing or manipulating fire were developed. In 2008, DARPA launched the Instant Fire Suppression (IFS) program to develop a fundamental understanding of fire with the aim of transforming approaches to firefighting.

Traditional technologies focus largely on disrupting the chemical reactions involved in combustion. However, from a physics perspective, flames are cold plasmas. DARPA theorized that by using physics techniques rather than combustion chemistry, it might be possible to manipulate and extinguish flames. To achieve this, new research was required to understand and quantify the interaction of electromagnetic and with the plasma in a flame.

The IFS program was executed in two phases. In Phase I, performers studied the behind flame suppression and control, exploring a range of approaches before down-selecting to electromagnetics and acoustics. In Phase II, performers determined the mechanisms behind electric and acoustic suppression and evaluated the scalability of these approaches for defense applications.

One of the technologies explored was a novel flame-suppression system that used a handheld electrode to suppress small and fires. In the video below, performers sweep the electrode over the ignited burner array and progressively extinguish the 10-cm2 gas flame. Since the electrode is sheathed in ceramic glass, no current is established between the electrode and its surroundings. A visualization of gas flows during the suppression would show that the oscillating field induces a rapid series of jets that displace the combustion zone from the fuel source, leading to extinguishment of the fire. Put simply, the electric field creates an ionic wind that blows out the flame. This same approach was not able to suppress a small heptane pool flame.

This video is not supported by your browser at this time.

Performers also evaluated the use of acoustic fields to suppress flames. In the video below, a flame is extinguished by an acoustic field generated by speakers on either side of the pool of fuel. Two dynamics are at play in this approach. First, the acoustic field increases the air velocity. As the velocity goes up, the flame boundary layer, where combustion occurs, thins, making it easier to disrupt the flame. Second, by disturbing the pool surface, the acoustic field leads to higher fuel vaporization, which widens the flame, but also drops the overall flame temperature. Combustion is disrupted as the same amount of heat is spread over a larger area. Essentially, in this demonstration the performers used speakers to blast sound at specific frequencies that extinguish the .

This video is not supported by your browser at this time.

IFS Phase II was completed in December 2011. IFS performers succeeded in demonstrating the ability to suppress, extinguish and manipulate small flames locally using electric and acoustic suppression techniques. However, it was not clear from the research how to effectively scale these approaches to the levels required for defense applications.

Remarking on the overall impact of the IFS program, Matthew Goodman, DARPA program manager, said, "We have shown that the physics of combustion still has surprises in store for us. Perhaps these results will spur new ideas and applications in combustion research."

For example, the data collected by the IFS program could potentially be applied to the inverse challenge of fire extinguishment, namely increasing the efficiency of combustion. Such technology could be especially beneficial to defense technologies that employ small engines.

Explore further: Researchers use 3D printers to create custom medical implants

add to favorites email to friend print save as pdf

Related Stories

FLEX-ible insight into flame behavior

Nov 30, 2011

(PhysOrg.com) -- Whether free-burning or smoldering, uncontrolled fire can threaten life and destroy property. On Earth, a little water, maybe some chemicals, and the fire is smothered.

Space Image: Aflame

Jun 24, 2011

Fire acts differently in space than on Earth. Sandra Olson, an aerospace engineer at NASA's Glenn Research Center, demonstrates just how differently in her art. This artwork is comprised of multiple overlays ...

Some flame retardants make fires more deadly

Mar 27, 2012

Some of the flame retardants added to carpets, furniture upholstery, plastics, crib mattresses, car and airline seats and other products to suppress the visible flames in fires are actually increasing the danger of invisible ...

Recommended for you

For secure software: X-rays instead of passport control

23 hours ago

Trust is good, control is better. This also applies to the security of computer programs. Instead of trusting "identification documents" in the form of certificates, JOANA, the new software analysis tool, examines the source ...

Razor-sharp TV pictures

Aug 21, 2014

The future of movie, sports and concert broadcasting lies in 4K definition, which will bring cinema quality TV viewing into people's homes. 4K Ultra HD has four times as many pixels as today's Full HD. And ...

Michigan team finds security flaws in traffic lights

Aug 21, 2014

What if attackers could manipulate traffic lights so that accidents would happen with mayhem as the result? That is a question many would rather put off for another day but authorities feeling responsible ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

MrRubbs
not rated yet Jul 13, 2012
Please correct me if I'm wrong but essentially all the methods seem to rely on "Blowing out the flame"?
The only real methods are separate fuel from combustion source, since once the flame is lit there is no safe way of taking the heat out of the plasma.(unsafe method vent fire/oxygen, replace oxygen with non reactive gas- still kills people!)
It's a worthwhile study, but we'd need some ground breaking physics to turn back time, or stop/slow energetic particles(the fire).