Novel equations improve image processing

Jul 06, 2012
Novel equations improve image processing
Credit: Thinkstock

A specific class of mathematical equations is helping to solve major challenges in the field, facilitating advanced modelling in a number of applications from climate change to desertification.

Different areas of science and technology (S&T) are increasingly intersecting at a number of disciplines and topics, giving researchers new frontiers to explore. One of these areas is non-linear partial differential equations (NL-PDEs) which have been touted recently as a key tool for accomplishing a large array of tasks. The EU-funded project 'Fronts and interfaces in science and technology' (FIRST) is bringing together engineers and mathematicians with experience in numerical algorithms to solve complex challenges involving NL-PDEs.

This calls for sophisticated mathematical modelling of numerous physical processes seen in different applications, accurately displaying phenomena that reflect hysteresis, delay or long-range-interaction effects. The project is focusing on applications in image processing and patterns in complex reaction-diffusion systems, as well as interfaces, control and inverse methods in technology challenges.

Focusing on strong exchanges among project participants, the project spans eight universities that are currently offering specialised courses and workshops in the relevant fields. FIRST's highly challenging research modules are proving useful for various contemporary topics such as and desertification. The project is also focusing on mathematical developments such as non-local and higher-order problems, as well as multi-scale and stochastic analysis among other topics.

A set of benefits such as global interaction, new publications and a better understanding of mathematics in complex applications is set to emerge from the project. The results should contribute to overcoming challenges in understanding the world around us and simplifying useful .

Explore further: Heat distributions help researchers to understand curved space

add to favorites email to friend print save as pdf

Related Stories

New method for solving differential equations

Jan 24, 2008

Dutch-sponsored mathematician Valeriu Savcenco has developed new methods for the numerical solution of ordinary differential equations. These so-called multirate methods are highly efficient for large systems, where some ...

Mathematicians promise animation revolution

Mar 30, 2005

CSIRO mathematicians are combining art and science to solve one of the last big challenges in animation – fluids. They are aiming to develop techniques for fluid animations that are so realistic audiences wil ...

Hybrid systems get strengthened through diversity

Jan 11, 2010

(PhysOrg.com) -- Our everyday work and home lives are becoming increasingly dependent on complex computerised networks with built-in control systems. European researchers are working to make the controls more ...

Advances in mathematical description of motion

May 29, 2012

Complex mathematical investigation of problems relevant to classical and quantum mechanics by EU-funded researchers has led to insight regarding instabilities of dynamic systems. This is important for descriptions ...

Recommended for you

Study claims cave art made by Neanderthals

15 hours ago

A series of lines scratched into rock in a cave near the southwestern tip of Europe could be proof that Neanderthals were more intelligent and creative than previously thought.

User comments : 0