A deeper look into the pathogen responsible for crown gall disease in plants

Jul 11, 2012

Next week's Journal of Biological Chemistry "Paper of the Week" by Wai Mun Huang and colleagues at the University of Utah Health Sciences Center and the University of Minnesota reveals new insights into the molecular properties of the rod-shaped soil bacterium Agrobacterium tumefaciens, the pathogen responsible for crown gall disease, a tumor-forming infection in plants, such as tomatoes, walnuts, grapes and beets.

The bacterium is parasitic: It infects its plant host by entering through an open wound, inserts a small segment of its genetic code into the plant's genome, devours energy made by the plant, and forms knobby brown lesions on the plant stem.

Huang's group focused on the pathogen's genetic material. Most bacteria have circular chromosomes. But A. tumefaciens C58, the strain studied by Huang's group, contains one circular chromosome and one linear chromosome (along with two circular plasmids). Huang's research illuminates how this bacterium maintains its linear chromosome.

Huang's team ascertained the DNA sequence for the telomeres, or the protective end caps, of the linear chromosome in A. tumefaciens C58 and confirmed that an enzyme, TelA, actually forms them by making hairpin loops. These end caps are important for maintaining the stability of linear chromosomes. Interestingly, TelA also binds the telomeres. This activity is unique among of this kind and may protect the telomeres (which degrade over time and thus lose their ability to preserve DNA), as telomere do in eukaryotes.

"Hairpin-ended linear chromosomes and plasmids are found in a number of branches of bacteria and viruses," Huang says. "They are simple and elegant to form and to maintain." But what remains to be understood is why this linear configuration is not more common or even the preferred configuration for bacteria, Huang emphasizes.

Explore further: Decoding 'sweet codes' that determine protein fates

More information: "Linear chromosome generating system of Agrobacterium tumefaciens C58: Protelomerase generates and protects hairpin ends" by Wai Mun Huang, Jeanne DaGloria, Heather Fox, Qiurong Ruan, John Tillou, Ke Shi, Hideki Aihara, John Aron, and Sherwood Casjens

Link to Paper in Press version of article: bit.ly/MfBz8C

add to favorites email to friend print save as pdf

Related Stories

Evolutionary origin of bacterial chromosomes revealed

Mar 26, 2009

Researchers have unveiled the evolutionary origin of the different chromosomal architectures found in three species of Agrobacterium. A comprehensive comparison of the Agrobacterium sequence information with the genome sequences ...

Common weed could provide clues on aging and cancer

Oct 26, 2009

A common weed and human cancer cells could provide some very uncommon details about DNA structure and its relationship with telomeres and how they affect cellular aging and cancer, according to a team led by scientists from ...

The proteins ensuring genome protection

Feb 12, 2012

Researchers from the University of Geneva (UNIGE), Switzerland, have discovered the crucial role of two proteins in developing a cell 'anti-enzyme shield'. This protection system, which operates at the level of molecular ...

Breeding potatoes with improved properties

Nov 29, 2010

It is possible to breed potatoes in such a way that they produce new types of starch for use as a new and improved plant-based raw material in the construction, paper, glue, fodder and food industries. These ...

Recommended for you

Chemical biologists find new halogenation enzyme

15 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

20 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

20 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

22 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 0