Cyberwarfare, conservation and disease prevention could benefit from novel network model

July 10, 2012

Computer networks are the battlefields in cyberwarfare, as exemplified by the United States' recent use of computer viruses to attack Iran's nuclear program. A computer model developed at the University of Missouri could help military strategists devise the most damaging cyber attacks as well as guard America's critical infrastructure. The model also could benefit other projects involving interconnected groups, such as restoring ecosystems, halting disease epidemics and stopping smugglers.

"Our model allows users to identify the best or worst possible scenarios of network change," said Tim Matisziw, assistant professor of geography and engineering at MU. "The difficulty in evaluating a networks' resilience is that there are an of possibilities, which makes it easy to miss important scenarios. Previous studies focused on the destruction of large hubs in a network, but we found that in many cases the loss of smaller facilities can be just as damaging. Our model can suggest ways to have the maximum impact on a network with the minimum effort."

Limited resources can hinder law enforcement officers' ability to stop criminal organizations. Matisziw's model could help design plans which efficiently use a minimum of resources to cause the maximum disruption of trafficking networks and thereby reduce flows of drugs, weapons and exploited people. In a similar fashion, could be mitigated by identifying and then blocking important links in their transmission, such as airports.

However, there are some networks that society needs to keep intact. After the breakdown of such a network, the model can be used to evaluate what could have made the disruption even worse and help officials prevent future problems. For example, after an failure, such as the recent blackout in the eastern United States, future system failures could be pinpointed using the model. The critical weak points in the electrical grid could then be fortified before disaster strikes.

The model also can determine if a plan is likely to create the strongest network possible. For example, when construction projects pave over wetland ecosystems, the law requires that new wetlands be created. However, ecologists have noted that these new wetlands are often isolated from existing ecosystems and have little value to wildlife. Matisziw's model could help officials plan the best places for new wetlands so they connect with other natural areas and form wildlife corridors or stretches of wilderness that connect otherwise isolated areas and allow them to function as one ecosystem.

Matisziw's model was documented in the publicly available journal PLoS ONE. Making such a powerful tool widely available won't be a danger, Matisziw said. To use his model, a network must be understood in detail. Since terrorists and other criminals don't have access to enough data about the networks, they won't be able to use the model to develop doomsday scenarios.

Explore further: New model helps protect future wetlands

More information: The paper "Robustness Elasticity in Complex Networks" can be viewed online in the journal PLoS ONE:

Related Stories

Protecting networks is just a game

July 27, 2011

How can an organization detect the onset of an attack on its computer network giving it time to respond quickly and block any intrusion or compromise of its data? Modern firewalls and other technology are already in place, ...

Researchers find way to measure effect of Wi-Fi attacks

September 12, 2011

Researchers from North Carolina State University have developed a way to measure how badly a Wi-Fi network would be disrupted by different types of attacks – a valuable tool for developing new security technologies.

How quickly things spread

February 21, 2012

Understanding the spread of infectious diseases in populations is the key to controlling them. If we were facing a flu pandemic, how could we measure where the greatest spreading risk comes from? This information could help ...

Why rumors spread fast in social networks

May 21, 2012

Information spreads fast in social networks. This could be observed during recent events. Now computer scientists from the German Saarland University provide the mathematical proof for this and come up with a surprising explanation.

Recommended for you

Drone market to hit $10 billion by 2024: experts

October 3, 2015

The market for military drones is expected to almost double by 2024 to beyond $10 billion (8.9 billion euros), according to a report published Friday by specialist defence publication IHS Jane's Intelligence Review.

Radio frequency 'harvesting' tech unveiled in UK

September 30, 2015

An energy harvesting technology that its developers say will be able to turn ambient radio frequency waves into usable electricity to charge low power devices was unveiled in London on Wednesday.

Professors say US has fallen behind on offshore wind power

September 29, 2015

University of Delaware faculty from the College of Earth, Ocean, and Environment (CEOE), the College of Engineering and the Alfred Lerner School of Business and Economics say that the U.S. has fallen behind in offshore wind ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Jul 10, 2012
Making such a powerful tool widely available won't be a danger, Matisziw said. To use his model, a network must be understood in detail. Since terrorists and other criminals don't have access to enough data about the networks, they won't be able to use the model to develop doomsday scenarios.
if i were him i wouldn't be too confident in such a statement people are remarkably resourceful and they might be able to gain the information that he says they can't

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.