How a common fungus knows when to attack

July 24, 2012

The opportunistic fungal pathogen Candida albicans inconspicuously lives in our bodies until it senses that we are weak, when it quickly adapts to go on the offensive. The fungus, known for causing yeast and other minor infections, also causes a sometimes-fatal infection known as candidemia in immunocompromised patients. An in vivo study, published in mBio, demonstrates how C. albicans can distinguish between a healthy and an unhealthy host and alter its physiology to attack.

"The ability of the fungus to sense the immune status of its host may be key to its ability to colonize harmlessly in some people but become a deadly pathogen in others," said Jessica V. Pierce, BA, PhD student in the molecular microbiology program at the Sackler School of Graduate Biomedical Sciences at Tufts.

"Effective detection and treatment of disease in immunocompromised patients could potentially work by targeting the levels of a protein, Efg1p, that we found influenced the growth of Candida albicans inside the host," she continued.

The researchers knew from previous research that Efg1p influences the expression of genes that regulate how harmful a fungal cell can become. Surprisingly, the investigators found that lower Efg1p levels allow the fungal cells to grow to high levels inside a host. Higher levels of the protein result in less growth.

To examine how the immune status could affect the growth of C. albicans within a host, the researchers fed both healthy and immunocompromised mice equal amounts of two fungal strains containing two different levels of the Efg1p protein.

Fecal pellets from the mice were tested to determine which strain of fungi thrived. In a healthy host, the fungal cells with higher levels of the protein predominated.

In immunocompromised mice, the fungal cells with lower levels of the protein flourished. The researchers noted that lack of interactions with in the most likely caused the necessary favoring that express lower levels of the protein, resulting in fungal overgrowth and setting the stage for systemic infection.

"By having a mixed population with some high Efg1p cells and some low Efg1p cells, the fungus can adjust its physiology to remain benign or become harmful when it colonizes hosts with varying immune statuses. These findings are important because they provide the first steps toward developing more effective methods for detecting and treating serious and stubborn infections caused by , such as candidemia," said Carol A. Kumamoto, PhD, professor of molecular biology and microbiology at Tufts University School of Medicine and member of the and genetics program faculties at the Sackler School of Graduate Biomedical Sciences.

The immune system and "good bacteria" within the body act to regulate the size of C. albicans fungal populations in healthy individuals. When the immune system is compromised, the fungus can spread throughout the body. Candidemia, i.e. blood-borne Candida, is the fourth most common blood infection among hospitalized patients in the United States and is found in such as babies, those with catheters, and the critically ill.

Explore further: Researchers at Case Western Reserve discover a new way the body fights fungal infection

More information: Pierce JV, Kumamoto CA. mBio. "Variation in Candida albicans EFG1 Expression Enables Host-Dependent Changes in Colonizing Fungal Populations." July 24, 2012. DOI:10.1128/mBio.00117-12

Related Stories

New Way to Fight Fungal Infection

June 23, 2009

(PhysOrg.com) -- A team of researchers led by Amy G. Hise, M.D., M.P.H., assistant professor at the Center for Global Health and Diseases at Case Western Reserve University's School of Medicine, has discovered how the body ...

Early test for a killer of the sickest

March 3, 2010

An early test for fungal infections that measures how a patient's genes are responding could save the lives of some very sick patients. Researchers at Duke University's Institute for Genome Sciences & Policy have devised ...

Fatal fungal infections resist newest class of drugs

September 7, 2011

Fungi that cause severe infections in those with compromised immune systems are resisting the action of the latest group of antifungal drugs. Uncovering their strategies for doing this will lead to more effective treatments, ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.