Zooming in on single cells

Jul 03, 2012
Long Cai's new imaging technique (d.) can zoom in on and identify genetic information within a single cell. [Credit: Long Cai/Caltech]

(Phys.org) -- Last fall, assistant professor of chemistry Long Cai received a New Innovator Award from the National Institutes of Health (NIH). Now, just nine months later, Cai has published the first results of his supported research.   

Cai and his colleagues are working to use high-powered microscopy to help them better understand the genetic programs in individual . "We developed a new technique to show that super-resolution microscopy (SRM)—which is a cool, single-molecule-based technology that has been used to zoom in on structures and organelles in cells—can also be used to look at genetic information within a cell, like RNA and proteins," says Cai, who joined the Caltech faculty in 2010.

His paper, "Single-cell systems biology by super-resolution imaging and combinatorial labeling," is available as an advance online publication of the journal Nature Methods.

With the help of coauthor Eric Lubeck, a graduate student in biochemistry and molecular biophysics, Cai labeled individual mRNA molecules within a cell with distinct molecular barcodes. When the cell is imaged using SRM, the barcodes can be resolved and used to read the gene expression levels.   

"If you want to look at a genetic network, then you want to look at many of the individual genes at the same time—this is a way to allow you to do that in single cells," says Cai. "This technique may provide valuable information about rogue cells that are involved in cancer and other diseases, and look at gene expression in single cells within their native environments."

He says that the idea was sparked after a discussion with Barbara Wold, Bren Professor of Biology, about transcription regulation and new advances in single- molecule techniques. "It's really great to have ideas stimulated from an afternoon discussion over coffee," says Cai, "and this is part of what makes Caltech special." The project was started nearly three years ago, when Cai was a Beckman Fellow in the laboratory of Michael Elowitz, professor of biology and a Howard Hughes Medical Institute investigator. "Michael was very generous in letting me use his microscopes and lab to start the experiment," he says. "The NIH award helped us to finish the work when I set up my own lab."

Cai explains that their new method combines two existing technologies. In their proof-of-principle study, the duo was able to measure mRNA molecules in 32 genes simultaneously and within the same cell.   

"Now we're trying to show that it is possible to look at 100 genes at the same time," says Cai, who thinks it will be possible to measure thousands of genes concurrently. "It's just a matter of time."  

Explore further: Researchers discover new strategy germs use to invade cells

add to favorites email to friend print save as pdf

Related Stories

Scientists resolve how chromosomal mix-ups lead to tumors

Mar 29, 2012

(Medical Xpress) -- A new study by scientists from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, resolves longstanding questions about ...

Gene that suppresses cell's immune activation identified

Mar 24, 2011

(PhysOrg.com) -- A new study of prostate tumors has shown that a gene, FOXO3, suppresses activation of cells related to immunity and thus leads to a reduced immune response against a growing cancer. One of the main ...

New compound combats drug-resistant bacteria

Sep 27, 2011

(PhysOrg.com) -- Yale scientists using bits of material from the human immune system have developed a compound that can neutralize or kill several varieties of drug-resistant and other dangerous bacteria. ...

Recommended for you

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0