Researchers develop blue-fluorescent molecular nanocapsules

Jul 13, 2012 By Adarsh Sandhu
Chemical structure of molecular nanocapsules. Credit: Tokyo Institute of Technology

Michito Yoshizawa, Zhiou Li, and collaborators at Tokyo Institute of Technology synthesized ~1 nanometer-sized molecular capsules with an isolated cavity using green and inexpensive zinc and copper ions. In sharp contrast to previous molecular capsules and cages composed of precious metal ions such as palladium and platinum, these nanocapsules emit blue fluorescence with 80% efficiency.

Molecular nanocapsules have potential applications as photo-functional compounds and materials but so far molecular capsules synthesized by incorporating palladium ions and so on exhibit poor fluorescence.

The Tokyo Tech researchers expect to be able to prepare multicolor fluorescence composites by the simple insertion of appropriate fluorescent molecules into the isolated cavity of the nanocapsules.

Fluorescent properties of the copper capsule. Credit: Tokyo Institute of Technology

Fluorescence has widespread applications, helping researchers to understand issues in the fundamental sciences and develop practical materials and devices. Among the useful fluorescent compounds in development, capsule-shaped molecular architectures, which possess both strong fluorescent properties and a nanometer-sized cavity, are particularly promising.

Molecular cages and capsules can be prepared through a simple synthetic process called coordinative . However, most of them are composed of precious metal ions such as palladium and platinum, and are non-emissive due to quenching by the .

Now, Michito Yoshizawa, Zhiou Li, and co-workers from the Chemical Resources Laboratory at Tokyo Institute of Technology report novel molecular nanocapsules with the M2L4 composition (where M represents zinc, copper, platinum, palladium, nickel, cobalt, and manganese). Their zinc and copper capsules, in particular, display unique fluorescent properties.

The M2L4 capsules self-assemble from two and four bent that include anthracene fluorophores (fluorescent parts). X-ray crystallographic analysis verified the closed shell structures where the large interior cavities of the capsules, around one nanometer in diameter, are shielded by eight anthracene panels.

The zinc capsule emitted strong blue fluorescence with a high quantum yield (80%), in sharp contrast to the weakly emissive nickel and manganese capsules and the non-emissive palladium, platinum, and cobalt capsules. The fluorescence of the copper capsule, on the other hand, depends on the solvent; for example, it shows blue emission in dimethyl sulfoxide but no emission in acetonitrile.

This study is the first to show such emissive properties of molecular capsules bearing an isolated large cavity. The researchers believe their nanocapsules could have novel applications in devices such as chemosensors, biological probes, and light-emitting diodes.

Explore further: Artificial muscles get graphene boost

More information: Zhiou Li, et al., “Isostructural M2L4 Molecular Capsules with Anthracene Shells: Synthesis, Crystal Structures, and Fluorescent Properties”, Chemistry - A European Journal, 18, 8358 (2012). DOI: 10.1002/chem.201200155

Related Stories

Self-healing surfaces

Aug 03, 2009

The engineers' dream of self-healing surfaces has taken another step towards becoming reality -- researchers have produced a electroplated layer that contains tiny nanometer-sized capsules. If the layer is ...

Nanoparticles create biocompatible capsules

Mar 06, 2006

An innovative strategy of mixing lipids and nanoparticles to produce new drug and agricultural materials and delivery vehicles has been developed by researchers at the University of Illinois at Urbana-Champaign.

Magnetic spin on non-magnetic materials

Feb 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled ...

Recommended for you

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.