New findings expand Apollo observations of lunar atmosphere

July 18, 2012
Moon. Image credit: NASA

In December 1972 the astronauts of Apollo 17-the last manned mission to the moon-deployed the Lunar Atmospheric Composition Experiment (LACE), a spectrometer designed to measure and characterize the thin lunar atmosphere. Forty years later, Stern et al. built upon those initial measurements, providing the first remotely-sensed measurement of the Moon's gaseous environment from lunar orbit. Using the Lyman Alpha Mapping Project's (LAMP's) far ultraviolet spectrograph aboard the Lunar Reconnaissance Orbiter, the authors determined the atmospheric concentration of helium.

By angling LAMP's sensors towards the lunar limb and comparing those observations against measurements of the interstellar background, the authors were able to estimate the helium concentration of the near-surface lunar environment. They calculate a density of 7,000 atoms per cubic centimeter at 120 degrees Kelvin (-244 degrees Fahrenheit), the assumed atmospheric temperature. The previous LACE observations ranged between 10,000 - 20,000 and 50,000 atoms per cubic centimeter depending on the time of day, increasing at nighttime and decreasing during the day. The nighttime decrease occurs because the atmosphere cools and contracts, yielding an increased density.

The authors suggest that the next steps should involve looking for spatial or temporal variations in lunar atmospheric helium. Such observations could help to determine whether the helium is produced locally by radioactive decay of lunar material or if it is formed from trapped and neutralized solar wind.

Explore further: Back to the Moon: Lunar Reconnaissance Orbiter Project

More information: Lunar atmospheric helium detections by the LAMP UV spectrograph on the Lunar Reconnaissance Orbiter, Geophysical Research Letters, doi:10.1029/2012GL051797, 2012

Related Stories

Back to the Moon: Lunar Reconnaissance Orbiter Project

April 19, 2007

Of the two luminaries that dominate our sky, it is the moon that is of particular interest to the Lunar Reconnaissance Orbiter (LRO) project. The LRO will travel to the moon in late fall 2008, mapping the surface to help ...

NASA tests moon orbiter components

January 12, 2008

U.S. engineers are testing the components of the Lunar Reconnaissance Orbiter to make sure it is ready for its mission to the moon.

Send Your Name to the Moon Aboard LRO

May 1, 2008

NASA invites people of all ages to join the lunar exploration journey with an opportunity to send their names to the moon aboard the Lunar Reconnaissance Orbiter, or LRO, spacecraft.

Scientists detected surprising gases in Moon impact plume

October 21, 2010

NASA's Lunar Reconnaissance Orbiter (LRO) and its sophisticated suite of instruments have determined that hydrogen, mercury and other volatile substances are present in permanently shaded soils on the Moon, according to a ...

Recommended for you

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...

Researchers find a new way to weigh a star

October 5, 2015

Researchers from the University of Southampton have developed a new method for measuring the mass of pulsars – highly magnetised rotating neutron stars formed from the remains of massive stars after they explode into supernovae.

NASA selects investigations for future key planetary mission

October 1, 2015

NASA has selected five science investigations for refinement during the next year as a first step in choosing one or two missions for flight opportunities as early as 2020. Three of those chosen have ties to NASA's Jet Propulsion ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.