Improving air quality with no-till cropping

Jul 06, 2012 By Ann Perry
New ARS research has found that using some no-till farming systems with spring cereal crops in the Pacific northwest can reduce soil losses from wind erosion. Credit: Brenton Sharratt

Studies by U.S. Department of Agriculture (USDA) scientists show some no-till management systems can lower atmospheric levels of PM10—soil particles and other material 10 microns or less in diameter that degrade air quality—that are eroded from crop fields via the wind. These findings could help Pacific Northwest farmers reduce erosion from their fields and assist communities in complying with federal air quality regulations.

Agricultural Research Service (ARS) research leader Brenton Sharratt and ARS agronomist Frank Young conducted this research, which supports the USDA priorities of promoting international food security and responding to climate change. ARS is USDA's chief scientific research agency. Both scientists work at the ARS Land Management and Water Conservation Research Unit in Pullman, Wash.

Farmers in the inland Pacific Northwest favor winter wheat-summer fallow production systems so that crops can germinate and grow during late summer and fall. But controlling weeds and conserving water during the summer can require up to eight tillage passes. This produces a dry, loose layer of fine soil particles that can be easily eroded by strong summer winds.

Sharratt and Young conducted an 11-year study that evaluated whether no-till cereal rotations could help mitigate wind erosion. The systems they studied included typical winter wheat/summer fallow rotations, no-till spring barley/spring wheat rotations, and no-till spring wheat/chemical fallow rotations.

The scientists found that in the spring, soils in spring barley and spring wheat rotations were wetter than soils in traditional winter wheat systems. In late summer, the spring barley rotation also had more standing stubble than the other two rotations. The stubble helped keep soil on the ground and out of the air. Spring wheat/spring barley rotations also resulted in soils that had larger and more continuous pore space, higher water infiltration rates, higher saturated hydraulic conductivity, and higher drainage rates.

Sharratt and Young concluded that annual no-till spring cereal crops could significantly improve water infiltration and retention and help retain crop surface residue in the late summer—results that improve soil quality and reduce soil losses from wind erosion.

Findings from this work were published in the Journal of Soil and Water Conservation and Soil & Tillage Research in 2011.

Explore further: Five anthropogenic factors that will radically alter northern forests in 50 years

More information: Read more about this research in the July 2012 issue of Agricultural Research magazine.

add to favorites email to friend print save as pdf

Related Stories

Researchers examine way to undercut dust emissions

Jul 14, 2011

There is literally a way to undercut dust emissions in the very driest parts of the Pacific Northwest's Columbia Plateau region, according to a U.S. Department of Agriculture (USDA) scientist.

Summer fallow stores water in central great plains

Jan 12, 2011

Storing just one inch of water in an acre of soil is worth $25 to $30 per acre. That gets the attention of Central Great Plains farmers served by U.S. Department of Agriculture (USDA) researchers.

ARS Explores Ways to Keep Carbon in the Soil

Dec 03, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists are testing out alternative ways of tilling the soil and rotating crops to see if they can help wheat farmers in Oregon sequester more carbon ...

Nitrogen guidelines for cereal forages

Jun 24, 2011

Cereal grains such as wheat and barley are viable alternative hay crops and can provide valuable grazing opportunities. Due to drought resistance, good yields and ability to break pest cycles of perennial crops, annual forages ...

The future of cover crops

Jul 13, 2011

Winter cover crops are an important component of nutrient cycling, soil cover and organic matter content. Although its benefits are well documented, cover crop use in farming systems is relatively low. Research has shown ...

Recommended for you

More, bigger wildfires burning western US, study shows

11 hours ago

Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...