Ultrananocrystalline diamond-coated membranes show promise for medical implant applications

June 11, 2012
SEM image of AAO membrane coated with tungsten followed by UNCD exhibits 30-to 50-nm pore diameter

Ultrananocrystalline diamond (UNCD) displays biological and mechanical properties that make it a promising choice for promoting epidermal cell migration on percutaneous implant surfaces. Percutaneous implants are commonly used for treatment of medical and dental conditions. Biocompatibility of the implant material plays a crucial role in preventing infections that cause premature failure. Recent studies have shown that microporous membranes can facilitate migration of epidermal cells, enabling the development of a seal that resists movement of fluid and microorganisms and therefore improving the implant life.

A team of CNM users from the University of North Carolina and North Carolina State University, working with the & Devices Group, devised a simple but innovative approach that combines both of these aspects simply by coating silicon nitride microporous membranes with a conformal coating of ultrathin (~150 nm) UNCD films. The resulting membrane not only provides the required porous structure, but also offers exceptional mechanical and biocompatible properties.

The team demonstrated that their method also works on nanoporous anodized aluminum oxide (AAO) membranes that are coated with UNCD to reduce the pore size down to 30-50 nm. Scanning electron microscopy (SEM) and Raman spectroscopy were used to examine the pore structure and chemical bonding of the resulting membrane. Growth of human epidermal keratinocytes on uncoated and UNCD-coated silicon nitride microporous membranes was compared by using the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay.

Both membranes displayed increased cell growth due to their porosity, and the UNCD coating did not alter the viability of human epidermal keratinocytes. Because of its exceptional chemical and , it is expected that UNCD will provide a more stable implant-tissue interface than silicon nitride.

Explore further: Diamond technology to revolutionize mobile communications

More information: Skoog et al., "Ultrananocrystalline Diamond-Coated Microporous Silicon Nitride Membranes for Medical Implant Applications," JOM, 64, 520-525 (2012), DOI: 10.1007/s11837-012-0300-x  

Related Stories

Diamond technology to revolutionize mobile communications

August 7, 2006

The U. S. Department of Energy's Argonne National Laboratory has teamed with industrial and academic partners under a DARPA Phase II research and development program to develop a new technology based on Ultrananocrystalline ...

New nanocrystalline diamond probes overcome wear

November 10, 2009

Researchers at the McCormick School of Engineering and Applied Science at Northwestern University have developed, characterized, and modeled a new kind of probe used in atomic force microscopy (AFM), which images, measures, ...

Reusable templates for the production of nanowires

May 23, 2011

Scientists from Argonne National Laboratory CNM's Nanofabrication and Electronic and Magnetic Materials and Devices groups, working with users from the University of Wisconsin-Stevenson Point, discovered a fast, simple, scalable ...

Recommended for you

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.