Ultrananocrystalline diamond-coated membranes show promise for medical implant applications

Jun 11, 2012
SEM image of AAO membrane coated with tungsten followed by UNCD exhibits 30-to 50-nm pore diameter

Ultrananocrystalline diamond (UNCD) displays biological and mechanical properties that make it a promising choice for promoting epidermal cell migration on percutaneous implant surfaces. Percutaneous implants are commonly used for treatment of medical and dental conditions. Biocompatibility of the implant material plays a crucial role in preventing infections that cause premature failure. Recent studies have shown that microporous membranes can facilitate migration of epidermal cells, enabling the development of a seal that resists movement of fluid and microorganisms and therefore improving the implant life.

A team of CNM users from the University of North Carolina and North Carolina State University, working with the & Devices Group, devised a simple but innovative approach that combines both of these aspects simply by coating silicon nitride microporous membranes with a conformal coating of ultrathin (~150 nm) UNCD films. The resulting membrane not only provides the required porous structure, but also offers exceptional mechanical and biocompatible properties.

The team demonstrated that their method also works on nanoporous anodized aluminum oxide (AAO) membranes that are coated with UNCD to reduce the pore size down to 30-50 nm. Scanning electron microscopy (SEM) and Raman spectroscopy were used to examine the pore structure and chemical bonding of the resulting membrane. Growth of human epidermal keratinocytes on uncoated and UNCD-coated silicon nitride microporous membranes was compared by using the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay.

Both membranes displayed increased cell growth due to their porosity, and the UNCD coating did not alter the viability of human epidermal keratinocytes. Because of its exceptional chemical and , it is expected that UNCD will provide a more stable implant-tissue interface than silicon nitride.

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: Skoog et al., "Ultrananocrystalline Diamond-Coated Microporous Silicon Nitride Membranes for Medical Implant Applications," JOM, 64, 520-525 (2012), DOI: 10.1007/s11837-012-0300-x  

add to favorites email to friend print save as pdf

Related Stories

Reusable templates for the production of nanowires

May 23, 2011

Scientists from Argonne National Laboratory CNM's Nanofabrication and Electronic and Magnetic Materials and Devices groups, working with users from the University of Wisconsin-Stevenson Point, discovered a ...

New nanocrystalline diamond probes overcome wear

Nov 10, 2009

Researchers at the McCormick School of Engineering and Applied Science at Northwestern University have developed, characterized, and modeled a new kind of probe used in atomic force microscopy (AFM), which images, measures, ...

Diamond technology to revolutionize mobile communications

Aug 07, 2006

The U. S. Department of Energy's Argonne National Laboratory has teamed with industrial and academic partners under a DARPA Phase II research and development program to develop a new technology based on Ultrananocrystalline ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.