Tiny 'speed bump' device could sort cancer cells

June 12, 2012
In an illustration, magnetically labeled circulating tumor cells (shown as yellow spheres) travel with red and white blood cells and platelets over an array of slanted ramps in the device. The ramps act as speed bumps, slowing the tumor cells. As the tumor cells slow, the flow carries them along the length of the ramp, causing lateral displacement. After the tumor cells traverse an array of these ramps, they have sufficiently been displaced and can be continuously isolated from other cells in the sample. Credit: Martin Rietveld

In life, we sort soiled laundry from clean; ripe fruit from rotten. Two Johns Hopkins engineers say they have found an easy way to use gravity or simple forces to similarly sort microscopic particles and bits of biologicalmatter -- including circulating tumor cells.

In the May 25 online issue of , German Drazer, an assistant professor of chemical and biomolecular engineering, and his doctoral student, Jorge A. Bernate, reported that they have developed a lab-on-chip platform, also known as a microfluidic device, that can sort , cells or other tiny matter by physical means such as gravity. By moving a liquid over a series of micron-scale high diagonal ramps -- similar to speed bumps on a road -- the device causes microscopic material to separate into discrete categories, based on weight, size or other factors, the team reported.

The process described in the journal article could be used to produce a medical , the Whiting School of Engineering researchers say. "The ultimate goal is to develop a simple device that can be used in routine checkups by ," said doctoral student Bernate, who is lead author on the paper. "It could be used to detect the handful of that have managed to survive among billions of normal . This could save millions of lives."

Ideally, these in the could be detected and targeted for treatment before they've had a chance to metastasize, or spread cancer elsewhere. Detection at early stages of cancer is critical for successful treatment.

This video is not supported by your browser at this time.

How does this sorting process occur? Bernate explained that inside the microfluidic device, particles and cells suspended in liquid flow along a "highway" that has speed-bump-like obstacles positioned diagonally, instead of perpendicular to the path. The speed bumps differ in height, depending on the application.

"As different particles are driven over these diagonal speed bumps, heavier ones have a harder time getting over than the lighter ones," the doctoral student said. When the particles cannot get over the ramp, they begin to change course and travel diagonally along the length of the obstacle. As the process continues, particles end up fanning out in different directions.

"After the particles cross this section of the 'highway,'" Bernate said, "they end up in different 'lanes' and can take different 'exits,' which allows for their continuous separation."

Gravity is not the only way to slow down and sort particles as they attempt to traverse the speed bumps. "Particles with an electrical charge or that are magnetic may also find it hard to go up over the obstacles in the presence of an electric or magnetic field," Bernate said. For example, cancer cells could be "weighted down" with magnetic beads and then sorted in a device with a magnetic field.

The ability to sort and separate things at the micro- and nanoscale is important in many industries, ranging from solar power to bio-security. But Bernate said that a medical application is likely to be the most promising immediate use for the device.

He is slated to complete his doctoral studies this summer, but until then, Bernate will continue to collaborate with researchers in the lab of Konstantinos Konstantopoulos, professor and chair of the Department of Chemical and Biomolecular Engineering, and with colleagues at InterUniversity Microelectronics Center, IMEC, in Belgium. In 2011, Bernate spent 10 weeks at IMEC in a program hosted by Johns Hopkins' Institute for NanoBioTechnology and funded by the National Science Foundation.

His doctoral adviser, Drazer, said, the research described in the new journal article eventually led Jorge down the path at IMEC to develop a device that can easily sort whole blood into its components. A provisional patent has been filed for this device.

Explore further: Nano-implant measures tumor growth, treatment

Related Stories

Nano-implant measures tumor growth, treatment

December 5, 2006

A tiny implant now being developed at MIT could one day help doctors rapidly monitor the growth of tumors and the progress of chemotherapy in cancer patients. The implant contains nanoparticles that can be designed to test ...

LEGO toy helps researchers learn what happens on nanoscale

August 25, 2009

Johns Hopkins engineers are using a popular children's toy to visualize the behavior of particles, cells and molecules in environments too small to see with the naked eye. These researchers are arranging little LEGO pieces ...

Catching cancer with carbon nanotubes

March 28, 2011

A Harvard bioengineer and an MIT aeronautical engineer have created a new device that can detect single cancer cells in a blood sample, potentially allowing doctors to quickly determine whether cancer has spread from its ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.