SwRI building 8 NASA nanosatellites to help predict extreme weather events on Earth

Jun 21, 2012

NASA has selected a team including Southwest Research Institute to develop the Cyclone Global Navigation Satellite System (CYGNSS), which will provide better prediction capabilities for extreme weather events, particularly the intensification of hurricanes.

Tropical cyclones develop over warm bodies of water and typically consist of an "eye" — a center of low pressure — and intense, rotating thunderstorms that produce strong winds and heavy rains. Heat drawn up from the water produces energy through a complex process that can feed and strengthen the storm, spawning tornadoes and causing significant damage as it moves over land.

CYGNSS will study the relationship between properties, moist atmospheric thermodynamics, radiation and convective dynamics to determine how a tropical forms and if and by how much it will strengthen, thereby helping to advance forecasting and tracking methods.

"The system will allow us to probe the inner core of hurricanes in greater detail to understand their rapid intensification," says Dr. Chris Ruf, CYGNSS principal investigator and professor of atmospheric, oceanic and space sciences at the University of Michigan, Ann Arbor. "This will allow us to observe and understand the complete life cycle of storms and, thereby, understand the thermodynamics and radiation that drive their evolution. Our goal is a fundamental improvement in hurricane forecasting."

A single launch vehicle will carry CYGNSS' constellation of eight nanosatellite observatories into low-Earth orbit for deployment. Once in orbit, the observatories will receive Global Positioning System signals both directly from the GPS satellites and reflected from the Earth's surface. The direct signals pinpoint CYGNSS observatory positions, while the reflected signals respond to ocean surface roughness, which determines wind speeds.

Southwest Research Institute leads development and integration of the eight nanosatellites. Other partners include Surrey Satellite Technology, which will provide the Delay Doppler Mapping Instrument, and the Ames Research Center, which will provide the Deployment Module.

"In leading the development of the CYGNSS observatories, we are building on our heritage of spacecraft avionics and subsystem design and developments," says Dr. Jim Burch, vice president of the SwRI Space Science and Engineering Division. "It is a natural next step in the evolution of our support to NASA."

The primary objective of the mission is to measure the ocean surface wind speed in almost all precipitating conditions and in the tropical cyclone core; however, CYGNSS measurements should also be helpful to the hurricane forecasting community.

Explore further: Bacteria manipulate salt to build shelters to hibernate

add to favorites email to friend print save as pdf

Related Stories

NASA to fly into hurricane research this summer

Jul 07, 2010

Three NASA aircraft will begin flights to study tropical cyclones on Aug. 15 during the agency's first major U.S.-based hurricane field campaign since 2001. The Genesis and Rapid Intensification Processes ...

Recommended for you

Giant crater in Russia's far north sparks mystery

9 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

10 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

Jul 25, 2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

Jul 25, 2014

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

Biomarkers of the deep

Jul 25, 2014

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

User comments : 0