Superhydrophobic surface helps researchers develop optical displays from water and air (w/ Video)

Jun 14, 2012
Image: Aalto University

(Phys.org) -- For many years, scientists have been pursuing ways to mimic the perplexing capability of the lotus leaf to repel water. Lotus leaves hate water so much that droplets effortlessly roll off the surface, keeping it clean from dirt. Now an international team of researchers led by Aalto University have come up with an entirely new concept of writing and displaying information on surfaces using simply water. They exploit the unique way a trapped layer of air behaves on a lotus-inspired dual-structured water-repelling surface immersed under water.

To achieve the extreme of the , a surface needs to be superhydrophobic: it must have microscopic that prevent from wetting the surface completely, leaving a of air between water and the surface. When such a surface is immersed in water, a trapped air layer covers the entire surface.

The researchers lead by Dr. Robin Ras at Aalto University in Finland, University of Cambridge and Nokia Research Center Cambridge fabricated a surface with structures in two size scales: microposts that have a size of ten micrometers and tiny nanofilaments that are grown on the posts. On such a two-level surface the air layer can exist in two different shapes (wetting states) that correspond to the two size scales. The researchers found that one can easily switch between the two states locally using a nozzle to create over- or underpressure in the water, in order to change the air layer to either state.

This video is not supported by your browser at this time.

“The minimal energy needed to switch between the states means the system is bistable, which is the essential property of memory devices, for example”, Academy Research Fellow Dr. Robin Ras points out. However, there is a feature that makes it all the more interesting: there is a striking optical contrast between the states due to a change in the roughness of the water-air interface. “Combined with the optical effect, the surface is also a bistable reflective display.”

The switching only involves a change in the shape of the air layer − nothing happens to the solid surface itself. This is demonstrated by writing shapes on the surface underwater (making use of the contrast between the states) and taking the sample out of water: the surface emerges completely dry, and no traces of the writing remain.

The method for manipulating the air layer with the was developed by Tuukka Verho, graduate student in Aalto University. He was able to show that the reversible switching can be done with precision in a pixel-by-pixel fashion.

“This result represents the first step in making non-wettable surfaces a platform for storing or even processing information”, says Academy professor Olli Ikkala. Until now, lotus-inspired surfaces have been mainly developed for applications like self-cleaning, anti-icing or flow drag reduction. This research is a landmark example how the Nature teaches materials scientists towards functional materials.

An article entitled “Reversible switching between superhydrophobic states on a hierarchically structured ” is published in PNAS, Proceedings of the National Academy of Sciences, and provides more in depth information about this project.

Explore further: X-ray powder diffraction beamline at NSLS-II takes first beam and first data

More information: www.pnas.org/cgi/doi/10.1073/pnas.1204328109

Related Stories

Stay super-dry with Nokia's nanotechnology

Mar 07, 2012

What happens when a drop of water falls on a lotus leaf? It’s not a philosophical question, but a natural phenomenon scientists have been studying, and trying to make sense of, for hundreds of years. 

Unexpected ice-formation mechanism

Jan 18, 2012

(PhysOrg.com) -- Extremely hydrophobic materials cause water to roll right off objects that have been coated with them. Up to now, it was assumed that aircraft or wind turbines coated in such a way did not ...

Researchers reveal Eucalypt’s nano properties

Oct 31, 2011

(PhysOrg.com) -- Murdoch University nano scientists have discovered that a eucalyptus plant native to south west WA has unique self-cleaning and water-repellent properties which could make it a gold mine for ...

Bionic coating could help ships to economize on fuel

May 04, 2010

The hairs on the surface of water ferns could allow ships to have a 10 per cent decrease in fuel consumption. The plant has the rare ability to put on a gauzy skirt of air under water. Researchers at the University of Bonn, ...

Recommended for you

Particles, waves and ants

Nov 26, 2014

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.