Shape-shifting shell: Structure of a retrovirus at a potentially vulnerable stage

June 4, 2012
As a retrovirus matures, the two parts of its shell protein (red and blue or yellow and blue) dramatically rearrange themselves, twisting and moving away from each other. Credit: EMBL/T.Bharat

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have for the first time uncovered the detailed structure of the shell that surrounds the genetic material of retroviruses, such as HIV, at a crucial and potentially vulnerable stage in their life cycle: when they are still being formed. The study, published online today in Nature, provides information on a part of the virus that may be a potential future drug target.

Retroviruses essentially consist of encased in a protein , which is in turn surrounded by a membrane. After entering a – in the case of , one of the cells in our immune system – the replicates, producing more copies of itself, each of which has to be assembled from a medley of viral and cellular components into an immature virus. "All the necessary components are brought together within the host cell to form the immature virus, which then has to mature into a particle that's able to infect other cells" says John Briggs, who led the research at EMBL. "We found that when it does, the changes to the virus' shell are more dramatic than expected."

The role and shape of the protein shell (blue/orange) changes from the immature (top) to the mature form of the virus (bottom). Credit: EMBL/T.Bharat

Both the mature and immature virus shells are honeycomb-like lattices of hexagon-shaped units. Using a combination of electron microscopy and computer-based methods, Briggs and colleagues investigated which parts of the key proteins stick together to build the honeycomb of the immature shell. These turned out to be very different from the parts that build the mature shell. This knowledge will help scientists to unravel how the immature virus is assembled in the cell and how the shell proteins rearrange themselves to go from one form to the other.

This video is not supported by your browser at this time.
As a retrovirus matures, the two parts of its shell protein (red and blue or yellow and blue) dramatically rearrange themselves, twisting and moving away from each other. Credit: EMBL/T.Bharat

Findings such as these may one day prove valuable to those wanting to design new types of anti-retroviral therapies. Many anti-retroviral drugs already block the enzyme that would normally separate components of the immature shell to allow it to mature. But there are currently no approved drugs that act on that shell itself and prevent the enzyme from locking on.

Although the virus shells imaged in this study were derived from the Mason-Pfizer monkey virus and made artificially in the laboratory, they closely resemble those of both this virus and HIV – which are very similar – in their natural forms.

"We still need a lot more detailed information before drug design can really be contemplated," Briggs concludes, "but finally being able to compare mature and immature structures is a step forwards."

Explore further: Scientists create first crystal structure of an intermediate particle in virus assembly

Related Stories

New electron microscopy images reveal the assembly of HIV

June 23, 2009

Scientists at the European Molecular Biology Laboratory (EMBL) and the University Clinic Heidelberg, Germany, have produced a three-dimensional reconstruction of HIV (Human Immunodeficiency Virus), which shows the structure ...

Scientists reveal complete structure of HIV's outer shell

January 19, 2011

A team of scientists at The Scripps Research Institute and the University of Virginia has determined the structure of the protein package that delivers the genetic material of the human immunodeficiency virus (HIV) to human ...

How TRIM5 fights HIV

April 20, 2011

Thanks to a certain protein, rhesus monkeys are resistant to HIV. Known as TRIM5, the protein prevents the HI virus from multiplying once it has entered the cell. Researchers from the universities of Geneva and Zurich have ...

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.