Scientists first to observe plasmons on graphene

Jun 20, 2012
An infrared laser beam focused on the arm of an atomic-force microscope launches plasmons, waves through electrons, on the surface of graphene, a single honeycomb layer of linked carbon atoms. Credit: Basov Lab/UCSD

With a beam of infrared light, scientists have sent ripples of electrons along the surface of graphene and demonstrated that they can control the length and height of these oscillations, called plasmons, using a simple electrical circuit.

This is the first time anyone has observed plasmons on graphene, sheets of carbon just one atom thick with a host of intriguing physical properties, and an important step toward using plasmons to process and transmit information in spaces too tight to use light.

"Everybody suspected that plasmons should be there, but seeing is believing. We've imaged them and shown that they propagate. And we've demonstrated that we can control them," said Dimitri Basov, professor of physics at the University of California, San Diego, and senior author of the report published online June 21 in advance of print publication in Nature.

To make the devices, they peeled graphene from graphite, the stuff of pencil lead, and rubbed it onto chips.

They launched plasmons by shining an on the surface of the graphene and measured the waves using the ultrasensitive arm of an .

The outgoing waves are impossible to measure. But as they reach the edge of the graphene, they reflect like from the wake of a boat bouncing off a pier.

returning from the edge add to, or cancel out, subsequent waves, creating a characteristic that reveals their wavelength and amplitude.

The scientists showed that pattern could be altered by controlling an formed with electrodes attached to the graphene surface and a layer of pure silicon beneath the chips.

"Here it is," Basov said. "You just take a battery from a flashlight and crank the voltage and you have a tunable plasmonic device."

Just like light can carry complex signals through , plasmons could be used to transmit information. But plasmons could carry information within far tighter spaces.

"It's impossible to confine light at nanometer scales because light wavelengths are many hundreds of nanometers," said Zhe Fei, a graduate student in Basov's lab and the first author of the paper. "We used light to excite surface plasmons with a length scale of 100 nanometers or less that can travel at very high speed from one side of the chip to the other."

The performance they observed is promising. These are some of the shortest plasmon wavelengths measured in any material, yet the waves propagate as far as they do in metals like gold. And unlike plasmons on metals, graphene plasmons can be tuned.

A team of scientists working independently in Spain lead by Frank Koppens, Rainer Hillenbrand and Javier Garcia de Abajo has made a similar discovery using graphene film deposited by a gas rather than peeled from graphite. Their report, published in the same issue of Nature, bolsters this evidence for graphene plasmons.

" optoelectronics and information processing are very promising. We like to see our work contribute to future technology," Basov said. "There also is entirely new, fundamental science coming out of this. By monitoring plasmons, we learn what electrons do in this new form of carbon, how fundamental interactions govern their properties. This is a path of inquiry."

Explore further: Researcher customizes nanoscale systems for large-scale impact in light and energy

Related Stories

Graphene: What projections and humps can be good for

Apr 19, 2010

At present, graphene probably is the most investigated new material system worldwide. Due to its astonishing mechanical, chemical and electronic properties, it promises manifold future applications - for example ...

Scientists advance photonic technology

Mar 23, 2006

Scientists at Denmark's Aalborg University have created a family of devices for guiding and processing light in chip-based information technology.

Recommended for you

Copper shines as flexible conductor

7 hours ago

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

9 hours ago

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

sirchick
5 / 5 (2) Jun 20, 2012
Oh Graphene, such a show off.
Terriva
1 / 5 (3) Jun 20, 2012
It's questionable, whether it's plasmons of pure electrons and/or waves of graphene sheet itself (hybrid plasmon-phonon mode).
Terriva
3.7 / 5 (3) Jun 20, 2012
A team of scientists working independently in Spain lead by Frank Koppens, Rainer Hillenbrand and Javier Garcia de Abajo has made a similar discovery using graphene film deposited by a gas rather than peeled from graphite.

Apparently they're not first in preparation of plasmons in any way. There is the third study, which is one year old.
ZeroDelta
not rated yet Jun 20, 2012
it's easy to rule out phonons, for example; by calculating permittable modes due to sheet size & temp, not to mention these plasmons should be quite fast compared to the lattice vibrations.
Deadbolt
1 / 5 (1) Jun 21, 2012
I wonder why the LENR crew haven't turned up. Surface plasmon polaritons are supposed to be involved in that supposed process.

The fact that graphene allows tuning, whereas metal surfaces and lattices don't, is relevant to the NASA investigation too.