Rutgers granular-slip study documents voltage signals (w/ Video)

Jun 12, 2012 by Nancy Owano report
Image (c) PNAS, doi: 10.1073/pnas.1121596109

(Phys.org) -- A voltage signal preceding failure of bridges and other structures made of powder has been documented by three researchers in the Department of Biomedical Engineering at Rutgers University. Their findings, published on Monday in Proceedings of the National Academy of Sciences, are an important step forward.

The authors note that “it has been known for over a century that are produced by material failure, for example during crack formation of crystals and glasses, or stick-slip motion of liquid mercury on glass.”

They say that slip events in cohesive powders also produce electrical signals, and that these signals can appear significantly in advance of slip events. Key structural materials—ceramics in turbines, chalk in cliffs, and concrete in bridges—are made from powders; a voltage spike might precede cracking in these structures.

This video is not supported by your browser at this time.
Movie showing association between defect formation and subsequent slip events in tumbled powder bed. Video: PNAS, doi: 10.1073/pnas.1121596109

The authors of the paper, ”Electrostatic precursors to granular slip events,” are Troy Shinbrot, Nam H. Kim, and Nirmal Thyagu, and they discuss their results from lab tests on powders. They documented a voltage signal. They studied how clumps of fine particles emit electrical voltages just before they crack. Pulling powders apart seems to produce a voltage.

Shinbrot and his study team studied scoops of finely ground Tylenol in a slowly-spinning cylinder. Powder stuck to the sides, built up, and after reaching a certain height, cracked and tumbled down to the bottom. The “mini avalanches" created voltages higher than 100 volts. They discovered that the voltage spike sometimes preceded the avalanche by as much as five seconds.

This video is not supported by your browser at this time.
Movie showing association between crack formation and voltage production in sheared powder. Video: PNAS, doi: 10.1073/pnas.1121596109

Outside of Rutgers, a doctoral candidate familiar with the electrification of granular systems noted that five seconds might not be meaningful to save people from an earthquake area but would be beneficial in a smart-grid setting in turning off technologies that might cause explosions or fires during a quake.

The researchers at Rutgers performed several experiments before reaching their conclusions; they used different containers and different powders. Bleached and unbleached flour, plaster and mortar were tried and the team found the same results. Similar voltage signals are produced by crack-like defects in several powdered materials.

of these materials, in turn, may be preceded by telltale electrical signals. They speculate that similar changes could be warning signs of internal defects or of impending catastrophic failures in objects made of consolidated powders.

The authors acknowledge that electrical disturbances have been reported in the past to precede major earthquakes and rockbursts, but many of these reports have been anecdotal. At the same time, a growing body of field measurements will help other research efforts to more fully understand these events. “We anticipate that the ability to generate correlated electrical signals and in a controlled setting will enable future research to unveil the mechanisms leading to the curious effects.”

Prof. Shinbrot says a better understanding of the particles' electrical interactions may enable technologies that predict breakages before they cause catastrophic damage.

Explore further: Controlling core switching in Pac-man disks

More information: Electrostatic precursors to granular slip events, PNAS, Published online before print June 11, 2012, doi: 10.1073/pnas.1121596109

Abstract
It has been known for over a century that electrical signals are produced by material failure, for example during crack formation of crystals and glasses, or stick-slip motion of liquid mercury on glass. We describe here new experiments revealing that slip events in cohesive powders also produce electrical signals, and remarkably these signals can appear significantly in advance of slip events. We have confirmed this effect in two different experimental systems and using two common powdered materials, and in a third experiment we have demonstrated that similar voltage signals are produced by crack-like defects in several powdered materials.

Related Stories

Graphene battery demonstrated to power an LED

Mar 16, 2012

(PhysOrg.com) -- Scientists in Hong Kong have reported, in ArXiv, their experiments to make a graphene battery that they say generates an electrical current by drawing on the ambient thermal energy in the sol ...

Wearable electronics - the next fashion fad?

May 23, 2012

(Phys.org) -- When most of us think of electronics, we think of the sturdy stability of silicon and plastic. Flexibility is a trait that belongs to the organic world, where materials come in all shapes and ...

Recommended for you

Controlling core switching in Pac-man disks

19 hours ago

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

20 hours ago

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Terriva
not rated yet Jun 12, 2012
Earthquakes are known to generate huge electrostatic fields too (they manifest itself with various atmospheric phenomena).
gmurphy
not rated yet Jun 13, 2012
It's hard to see how these minor voltages could be easily detected on a vast steel bridge.
Archea
not rated yet Jun 13, 2012
Electrostatic fields generated with friction aren't of low voltage in general.
Ryker
5 / 5 (1) Jun 14, 2012
It's hard to see how these minor voltages could be easily detected on a vast steel bridge.
I think it's plausible voltages would also scale up, though. But I haven't read the paper, so I don't know whether they found or were even testing the correlation between the size of the fault and the generated signal.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.