Structure of RNAi complex now crystal clear

Jun 20, 2012 by Nicole Giese Rura

Researchers at the Whitehead Institute and Memorial Sloan-Kettering Cancer Center have defined and analyzed the crystal structure of a yeast Argonaute protein bound to RNA. This complex plays a key role in the RNA interference (RNAi) pathway that silences gene expression. Describing the molecular structure of a eukaryotic Argonaute protein has been a goal of the RNAi field for close to a decade.

"You can learn a lot from biochemical experiments, but to more fully understand a protein like Argonaute, it's useful to know where all of the atoms are and which amino acids are playing important roles," says Whitehead Institute Member David Bartel, who is also an MIT professor of biology and a Howard Hughes Medical Institute (HHMI) investigator. "Learning the Argonaute crystal structure is an important step in understanding the RNAi biochemical and will be the basis for many future experiments."

The yeast Argonaute structure is described in the June 21st print issue of Nature.

In humans and most other eukaryotes, the RNAi pathway can reduce production by reducing the proteins' RNA templates. By exploiting this pathway, scientists are able to knock down the expression of specific proteins and thereby determine their roles within the cell or organism. The RNAi pathway has also been of considerable interest for the treatment of human disease.

depends on two proteins, Dicer and Argonaute. Dicer recognizes double-stranded RNA (dsRNA), latches onto it, and chops it into pieces 21-23 nucleotides long. Argonaute recognizes the dsRNA bits, discards one strand, and uses the other as a guide. When a single-stranded RNA matches the guide RNA's sequence, Argonaute cleaves the targeted RNA, thereby preventing it from serving as a template for .

To determine the structure of Argonaute, Bartel and graduate student David Weinberg partnered with Kotaro Nakanishi in Dinshaw Patel's lab at Sloan-Kettering. Although the team expected to solve the structure of Argonaute alone, they were surprised to find that the protein came along with small bits of RNA that were also observed in the structure. The incorporation of these RNAs had switched the protein into an activated state that contained a four-component active site, the identification of which solved a longstanding mystery of what constituted the "missing" fourth component. With the structure of this complex in hand, scientists now have a better understanding for how it works.

"Seeing the of a eukaryotic Argonaute for the first time was very exciting—it's such a large with a complicated topology and many moving parts," says Weinberg. "It's a really impressive molecular machine."

Explore further: Genomes of malaria-carrying mosquitoes sequenced

More information: "Structure of yeast Argonaute with guide RNA" Nature. June 21, 2012.

Related Stories

RNA interference found in budding yeasts

Sep 11, 2009

Some budding yeast species have the ability to silence genes using RNA interference (RNAi). Until now, most researchers thought that no budding yeasts possess the RNAi pathway because Saccharomyces cerevisiae, the protoypical ...

Argonautes: A big turn-off for proteins

Feb 01, 2010

Johns Hopkins scientists believe they may have figured out how genetic snippets called microRNAs are able to shut down the production of some proteins.

MicroRNAs play a role in cocaine addiction

Jul 27, 2010

MicroRNAs, already linked to cancer, heart disease and mental disorders such as schizophrenia, may also be involved in addiction. A team of Rockefeller University neuroscientists has shown that a protein that plays a crucial ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

14 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.