Spin structure reveals key to new forms of digital storage, study shows

Jun 07, 2012
This image shows "All-in" and "all-out" spin arrangements in an Os tetrahedron of Cd2Os2O7. Nonmagnetic Cd and O ions are omitted for simplicity. Credit: RIKEN

A synthetic compound long known to exhibit interesting transition properties may hold the key to new, non-magnetic forms of information storage, say researchers at the RIKEN SPring-8 Center and their collaborators. The team's latest findings shed light on the complex relationship between a compound's electron spin arrangement and its transport properties, an area researchers have long struggled to understand.

The metal-insulator transition (MIT) is a phenomenon in which certain (electricity-conducting) metals make a sudden transition to become a (non-conducting) when cooled below a given temperature. Unlike pure insulators such as silicon and germanium, and pure conductors such as gold and silver, metals with MITs are by their nature unstable and difficult to characterize. This instability is also their strength: with MITs such as semiconductors form the building blocks for much of our modern technology.

Elucidating the physical basis for MIT, one of the oldest and least well-understood phenomena in condensed matter physics, would shed light on the properties of a wide range of potentially useful materials. Among these materials, the compound Cd2Os2O7, first discovered more than 30 years ago, has recently attracted renewed attention. Cd2Os2O7 has the intriguing property that when cooled to 227K (-46 °C), it undergoes both a metal-insulator transition and a magnetic transition to a state in which all its electron spins are aligned. This spin alignment, which makes the material magnetic, is useful for a wide array of applications, notably .

Previous efforts to elucidate this magnetic structure, however, have been complicated by another property of Cd2Os2O7: its propensity to absorb neutrons, which interferes with standard neutron scattering techniques used to analyze magnetism. To get around this problem, the researchers employed an alternative technique known as resonant x-ray scattering (RXS) using synchrotron radiation from the RIKEN SPring-8 facility, the world's most powerful synchrotron light source. Their results show that at 227K, Cd2Os2O7 structures itself into a tetrahedral network of osmium atoms with electron spins in each tetrahedron pointing in one of two directions: all inward, or all outward (Figure 1). The structure of this unusual "all-in-all-out" arrangement is such that the spins cancel each other out, so that the material as a whole is not magnetic.

Cd2Os2O7 thus has all the makings of a new kind of information storage medium, one whose binary bits of information ("all-in" and "all-out" spin arrangements) would, unlike present-day computer memory, be largely unaffected by surrounding magnetic fields. The results also provide fundamental insights into how can influence a material's transport properties, with broad applications in .

Explore further: Physicists consider implications of recent revelations about the universe's first light

add to favorites email to friend print save as pdf

Related Stories

Unfazed by imperfections

Jul 08, 2011

While insulating against electrical currents in their interior, the surface of materials called topological insulators permits the flow of electron spins relatively unhindered. The almost lossless flow ...

Magnetic spin on non-magnetic materials

Feb 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled ...

Electric control of aligned spins improves computer memory

Jan 19, 2010

Researchers from Helmholtz-Zentrum Berlin (HZB, Germany) and the French research facility CNRS, south of Paris, are using electric fields to manipulate the property of electrons known as "spin" to store data permanently. ...

Recommended for you

Mapping the road to quantum gravity

6 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

Steering chemical reactions with laser pulses

14 hours ago

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

User comments : 0

More news stories