Rapid test uses origami technology

June 21, 2012
Rapid Test Uses Origami Technology

(Phys.org) -- Complex laboratory investigations do produce reliable results, but they are not useful for point-of-care diagnostics. This is especially true in developing countries, which must rely on simple, inexpensive test methods that do not require a power source. Biosensors based on paper are an interesting alternative. American researchers from the University of Texas at Austin and the University of Illinois at Urbana-Champaign have now introduced a particularly clever concept in the journal Angewandte Chemie: print on one side of the paper, fold it up origami-style, laminate it, and the test is ready. Test evaluation requires only a voltmeter.

The team of researchers uses chromatography fabricated by wax printing. The printed areas become hydrophobic, while the unprinted remains hydrophilic. On one half of the paper, the researchers led by Richard M. Crooks and Hong Liu created a sample inlet and two hydrophilic channels, each leading from the inlet to a small chamber. The two chambers are connected to each other through a narrow opening. The required are also “printed” onto the paper. On the second half of the paper, a screen-printing process is used to add two electrodes made of conductive carbon ink. When the paper is then folded down the middle according to the principles of origami—no tape or glue—a three-dimensional structure is formed. This causes the electrodes to come into contact with the chambers. Finally, the folded paper is laminated.

When a drop of the sample is put into the inlet, the liquid moves through the two channels. One of the channels contains microspheres coated with an aptamer. An aptamer is a strand of DNA that can be constructed so as to selectively bind nearly any desired analyte molecule. For the purpose of demonstration, the researchers chose an aptamer for adenosine. If adenosine is in the sample, the aptamer binds to it. This releases an enzyme that was coupled to the aptamer. The enzyme continues to flow through the channel and reaches the chamber, which contains glucose and Prussian blue (iron hexacyanoferrate). This complex contains trivalent iron. The enzyme, glucose oxidase, oxidizes the glucose, which causes the iron in the Prussian blue to be reduced to the divalent form.

The second channel contains spheres with no aptamer. In the second chamber, therefore, no iron is reduced. Because the oxidation state of the iron in one chamber has been changed, the two chambers no longer have the same composition and an electric potential builds up. This can be measured by means of a capacitor and a measuring device like those used to test the voltage of a battery.

This principle can be used to easily and inexpensively produce rapid tests for a broad spectrum of different target molecules.

Explore further: Highly sensitive but easy to handle: test strips for the rapid detection of cocaine

More information: Richard M. Crooks, Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201202929

Related Stories

Diagnosis by Patterned Paper

January 29, 2007

Testing biological fluids such as blood and urine is essential for both diagnostics and routine checks. In remote, non-industrialized regions or for emergency on-the-spot diagnosis, current methods of laboratory analysis ...

Universal detector made of DNA building blocks

March 30, 2011

(PhysOrg.com) -- A method for detecting such diverse substances as antibiotics, narcotics and explosives - a universal detector, so to speak - has been developed by German researchers at the Max Planck Institute for Polymer ...

Everything flows in rapid diagnostic tests

April 12, 2012

(Phys.org) -- Our ability to detect pathogens has become quite good, but it usually requires complex laboratory techniques. Sometimes we need a quick result, or there is no laboratory nearby. Portable and fast methods of ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Bleach a possible key to life on earth

July 23, 2015

Hydrogen peroxide - commonly used as hair bleach - may have provided the energy source for the development of life on Earth, two applied mathematicians have found.

Acetic acid as a proton shuttle in gold chemistry

July 24, 2015

A recently published study gives a vivid example of unusual chemical reactivity associated with organogold complexes. Using modern physical methods and computational studies, the authors propose a reaction mechanism in which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.