Researchers 'heal' plasma-damaged semiconductor with treatment of hydrogen radicals

June 14, 2012

Gallium nitride (GaN) is a highly promising material for a wide range of optical and high-power electronic devices, which can be fabricated by dry etching with plasmas. However, the plasma-induced defects and surface residues that remain after such processes tend to degrade the optical and electrical properties of the devices. A team of Japanese researchers has developed and tested a new way to "heal" such defects.

The team exposed plasma-damaged GaN to hydrogen (H) radicals at room temperature. After testing various doses of H radicals, the researchers evaluated the optical properties of the GaN. The emitted when electrons near the edge of the valence shell in GaN absorbed and then re-emitted photons drastically decreased after chlorine plasma-beam etching. After treatment with the higher-level doses of H radicals, however, the photoluminescence was restored to almost the level of un-etched GaN.

The H radicals likely terminated the dangling bonds of Ga on the GaN surface, as well as desorbed the surface residues, which both led to the recovered optical performance. A key characteristic of the new healing process, described in a paper accepted to the American Institute of Physics' journal AIP Advances, is that it is performed in situ immediately after the etching process. This is important because unwanted surface oxidation can easily occur on plasma-damaged GaN that is exposed to air.

Explore further: Panasonic Develops a Gallium Nitride (GaN) Power Transistor with Ultra High Breakdown Voltage over 10000V

More information: "Photoluminescence recovery by in-situ exposure of plasma-damaged n-GaN to atomic hydrogen at room temperature" AIP Advances.

Related Stories

NXP brings GaN technology mainstream

June 7, 2011

At IMS2011 this week, NXP Semiconductors N.V. is showcasing a live demo of its next-generation products based on Gallium Nitride (GaN) technology.

Cancer detection from an implantable, flexible LED

September 19, 2011

Can a flexible LED conformably placed on the human heart, situated on the corrugated surface of the human brain, or rolled upon the blood vessels, diagnose or even treat various diseases? These things might be a reality in ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.