Researchers 'heal' plasma-damaged semiconductor with treatment of hydrogen radicals

Jun 14, 2012

Gallium nitride (GaN) is a highly promising material for a wide range of optical and high-power electronic devices, which can be fabricated by dry etching with plasmas. However, the plasma-induced defects and surface residues that remain after such processes tend to degrade the optical and electrical properties of the devices. A team of Japanese researchers has developed and tested a new way to "heal" such defects.

The team exposed plasma-damaged GaN to hydrogen (H) radicals at room temperature. After testing various doses of H radicals, the researchers evaluated the optical properties of the GaN. The emitted when electrons near the edge of the valence shell in GaN absorbed and then re-emitted photons drastically decreased after chlorine plasma-beam etching. After treatment with the higher-level doses of H radicals, however, the photoluminescence was restored to almost the level of un-etched GaN.

The H radicals likely terminated the dangling bonds of Ga on the GaN surface, as well as desorbed the surface residues, which both led to the recovered optical performance. A key characteristic of the new healing process, described in a paper accepted to the American Institute of Physics' journal AIP Advances, is that it is performed in situ immediately after the etching process. This is important because unwanted surface oxidation can easily occur on plasma-damaged GaN that is exposed to air.

Explore further: World's most complex crystal simulated

More information: "Photoluminescence recovery by in-situ exposure of plasma-damaged n-GaN to atomic hydrogen at room temperature" AIP Advances.

add to favorites email to friend print save as pdf

Related Stories

NXP brings GaN technology mainstream

Jun 07, 2011

At IMS2011 this week, NXP Semiconductors N.V. is showcasing a live demo of its next-generation products based on Gallium Nitride (GaN) technology.

Cancer detection from an implantable, flexible LED

Sep 19, 2011

Can a flexible LED conformably placed on the human heart, situated on the corrugated surface of the human brain, or rolled upon the blood vessels, diagnose or even treat various diseases? These things might ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.