Researchers 'heal' plasma-damaged semiconductor with treatment of hydrogen radicals

Jun 14, 2012

Gallium nitride (GaN) is a highly promising material for a wide range of optical and high-power electronic devices, which can be fabricated by dry etching with plasmas. However, the plasma-induced defects and surface residues that remain after such processes tend to degrade the optical and electrical properties of the devices. A team of Japanese researchers has developed and tested a new way to "heal" such defects.

The team exposed plasma-damaged GaN to hydrogen (H) radicals at room temperature. After testing various doses of H radicals, the researchers evaluated the optical properties of the GaN. The emitted when electrons near the edge of the valence shell in GaN absorbed and then re-emitted photons drastically decreased after chlorine plasma-beam etching. After treatment with the higher-level doses of H radicals, however, the photoluminescence was restored to almost the level of un-etched GaN.

The H radicals likely terminated the dangling bonds of Ga on the GaN surface, as well as desorbed the surface residues, which both led to the recovered optical performance. A key characteristic of the new healing process, described in a paper accepted to the American Institute of Physics' journal AIP Advances, is that it is performed in situ immediately after the etching process. This is important because unwanted surface oxidation can easily occur on plasma-damaged GaN that is exposed to air.

Explore further: How do liquid foams block sound?

More information: "Photoluminescence recovery by in-situ exposure of plasma-damaged n-GaN to atomic hydrogen at room temperature" AIP Advances.

add to favorites email to friend print save as pdf

Related Stories

NXP brings GaN technology mainstream

Jun 07, 2011

At IMS2011 this week, NXP Semiconductors N.V. is showcasing a live demo of its next-generation products based on Gallium Nitride (GaN) technology.

Cancer detection from an implantable, flexible LED

Sep 19, 2011

Can a flexible LED conformably placed on the human heart, situated on the corrugated surface of the human brain, or rolled upon the blood vessels, diagnose or even treat various diseases? These things might ...

Recommended for you

How do liquid foams block sound?

17 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

When things get glassy, molecules go fractal

21 hours ago

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Vacuum ultraviolet lamp of the future created in Japan

Apr 22, 2014

A team of researchers in Japan has developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.