Changing pigs' diets alters the gut microbiota

Jun 21, 2012

Including chicory in cereal-based diets of pigs results in profound changes in gut micro-environment, morphology, and microbial population of pigs, according to a study in the June 2012 Applied and Environmental Microbiology. Some of these changes were health-promoting, says principal investigator Jan Erik Lindberg of the Swedish University of Agricultural Sciences, Uppsala.

“Certain types of substrates, such as dietary fiber, escape digestion in the foregut and reach the hindgut of humans and mono-gastric animals, and are becoming important in applied nutrition,” says Lindberg. These substrates, called “prebiotics,” can alter bacterial composition, modify intestinal fermentation processes, promote gut development, and possibly improve health.

The changes were similar in the small and large intestines, but they differed for chicory forage and chicory root, says Lindberg. They also differed for both chicory forage and root as compared to the control diet, in potentially important ways, according to the report. For example, a lactic acid bacterium, Lactobacillus johnsonii, is involved in regulating production of the immune compound interleukin-12, while Lactobacillus mucosae is reported to possess probiotic mucus-binding ability. Both lactobacilli were dominant when chicory was included in the diet.

Additionally, the presence of chicory forage in the feed boosted the numbers of bacteria that produce butyrate, a key substrate for the epithelial cells that line the colon, as well as a signaling molecule for the gut immune system, says Lindberg. The major butyrate-producing bacteria were Faecalibacterium prausnitzii, Eubacterium rectale, and Roseburia sp. As their numbers rose, those of Prevotella spp.declined.

Prevotella are strictly anaerobic bacteria that have been identified as a dominant species in the large intestine of , and are also abundant in the ileum. Additionally, they were found (by other researchers) to be dominant in the gut microbiota of rural African children living largely on millet grain, sorghum, legumes, and vegetables.

Pigs fed chicory roots contained copious Megashaera elsdenii, a bacterium which is abundant in the colon of pigs fed a designed to prevent swine dysentery.

The research originated in the search for prebiotic fiber sources, says Lindberg. “In this context, chicory was a good candidate as both the root and the above-ground biomass, the forage, can be eaten by animals and humans. We knew that there are many members of the chicory family that we regularly eat in salad.”

“Prebiotic dietary effects can be used to minimize the occurrence of enteric disease, thereby reducing the need to use antimicrobials,” says Lindberg. “This will improve animal productivity and welfare, and will also minimize the occurrence of contaminated products that can pose threats in the human food chain.” Lindberg also says that he would expect a similar response to these dietary changes in humans.

Explore further: Environmental pollutants make worms susceptible to cold

More information: H. Liu, E. Ivarsson, J. Dicksved, T. Lundh, and J.E. Lindberg, 2012. Inclusion of chicory (Cichorium intybus L.) in pigs’ diets affects the intestinal microenvironment and the gut microbiota. Appl. Environ. Microbiol. 78:4102-4109.)

add to favorites email to friend print save as pdf

Related Stories

Compound in Apples Inhibits E. coli O157:H7

Dec 16, 2011

A compound that is abundant in apples and strawberries inhibits the highly pathogenic E. coli O157:H7 biofilms while sparing a beneficial strain of E. coli that also forms biofilms in the human gut, according to a paper in ...

Cancer-causing gut bacteria exposed

Sep 22, 2008

Normal gut bacteria are thought to be involved in colon cancer but the exact mechanisms have remained unknown. Now, scientists from the USA have discovered that a molecule produced by a common gut bacterium activates signalling ...

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Interactions of Earth's smallest players have global impact

Sep 19, 2014

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0