Physicists demonstrate quantum interference between two photons of different frequencies

Jun 07, 2012 by Lisa Zyga feature

(Phys.org) -- When two photons simultaneously enter two input ports of a beam splitter, their paths interfere destructively, which causes the photons to simultaneously exit the beam splitter through the same output port. Because this quantum interference effect changes the input into a different output, it could have applications in quantum information processing. But whereas the two photons are usually identical in experiments demonstrating this effect, a new study has demonstrated that quantum interference can also occur between two photons with different frequencies, giving researchers an additional degree of control.

The physicists, François Nguyen, Eva Zakka-Bajjani, Raymond Simmonds, and José Aumentado, of the National Institute of Standards and Technology in Boulder, Colorado, have published their study on the between two single photons of different microwave frequencies in a recent issue of Physical Review Letters.

As the researchers explained, the experiment builds on research from 25 years ago showing quantum interference for two photons having the same frequency.

“In the original experiment by Hong, Ou and Mandel in 1987, they used a semitransparent mirror as a mixing element or ‘’ for interfering two optical paths or ‘spatial,” Nguyen told Phys.org. “In our experiment, we have used parametric frequency conversion as a mixing element or beam splitter for stationary photons or excitation modes defined by their frequency (‘quantized electrical modes’). In both cases, the experiment is a demonstration of a two-photon quantum interference, but in our case, a new degree of freedom for photon-photon interaction is explored.”

In previous experiments, the two photons’ identical frequencies are confirmed by the way the photons are generated in the first place. Through a technique called parametric down-conversion, an input (or “pump”) photon travels through a non-linear crystal and is split into two indistinguishable outgoing photons with the same frequency. These photons are then fed into two input ports of a beam splitter where they interfere and exit together from either one port or the other with a 50-50 chance.

Scientists can also perform experiments to test if photons generated from different sources have the same frequency. However, two photons with slightly different frequencies have been shown to exhibit quantum interference if the beam splitter is a passive mixing element, meaning that it doesn’t require pump power, like a semi-transparent mirror. But in the new study, as the scientists explained, the beam splitter is an active element.

“In our case, the mixing element is active (requiring pump power) that can induce interference between photons with very different frequencies or ‘colors,’ also of very different energy (the additional pump energy makes up for this difference),” Nguyen said. “We believe this is the first time such a quantum two-photon interference based on a parametric effect (an active process) has been demonstrated.”

He added that this effect could be used in optical systems, where it could provide another way to help process quantum information.

“Being able to induce an interaction between photons of different frequencies adds a new tool for processing quantum information with photons,” he said. “This has been proposed in optical systems, in order to use not only the spatial or path information of a photon but also its energy. This paves the way for more fundamental investigations of quantum optics and information using superconducting artificial atoms and resonant circuits. Superconducting circuits enable us to prepare single-photon and complex photon states easily, the parametric interaction allows us to entangle those states amongst multiple resonant modes or simple entangle artificial atomic states, crucial to the development of a new quantum information-based technology.”

In the future, the plan to extend the experiments beyond microwave-frequency photons.

“We have done this between microwave modes or photons in a single resonator,” Nguyen said. “It is possible to perform the same experiments between two independent resonators or other types of resonators such as mechanical systems, or propagating photons (microwave or optical). At the heart of our system is a highly nonlinear element, the tunable SQUID inductance. There are other nonlinear processes that can be accessed and we plan to investigate other interesting effects and entangling mechanisms. Now that our group has shown the utility of parametric processes with microwave , we anticipate more developments to come from other researchers in the growing community of quantum information specialists.”

Explore further: Simon's algorithm run on quantum computer for the first time—faster than on standard computer

More information: François Nguyen, et al. “Quantum Interference between Two Single Photons of Different Microwave Frequencies.” PRL 108, 163602 (2012). DOI: 10.1103/PhysRevLett.108.163602

Journal reference: Physical Review Letters search and more info website

4.3 /5 (12 votes)

Related Stories

Physicists build first single-photon router

Aug 22, 2011

(PhysOrg.com) -- By demonstrating that an artificial atom embedded in a transmission line can route a single photon from an input port to one of two output ports, physicists have built the first router working ...

Two stopped light pulses interact with each other

May 08, 2012

(Phys.org) -- For the first time, physicists have experimentally demonstrated the interaction of two motionless light pulses. Because the stopped light pulses have a long interaction time, it increases the ...

Switching light on and off - with photons

Nov 09, 2011

(PhysOrg.com) -- Cornell researchers have demonstrated that the passage of a light beam through an optical fiber can be controlled by just a few photons of another light beam.

Yale scientists bring quantum optics to a microchip

Sep 08, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which ...

Recommended for you

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Jun 07, 2012
Might want to visit colossalstorage.
Rohitasch
4.5 / 5 (2) Jun 07, 2012
One could have at least supplied a diagram with this article.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.