NuSTAR opens out-of-this-world view thanks to Livermore Lab technology

Jun 13, 2012

For astrophysicist Bill Craig and his team, NASA's NuSTAR will open up a whole new world. In fact, NuSTAR will allow them to observe a new class of objects in space, called extreme objects, which have never been seen.

The Nuclear Spectroscopic (or ), is the first focusing, high energy X-ray that will open the hard X-ray sky for sensitive study for the first time. It is scheduled for launch today (June 13) from Kwajalein Atoll in the Marshall Islands.

For Livermore, the predecessor to NuSTAR was a balloon-borne instrument known as HEFT (the High Energy Focusing Telescope) that was funded, in part, by a Laboratory Directed Research and Development investment in 2001. NuSTAR takes HEFT's X-ray focusing abilities and sends them beyond Earth's atmosphere on a satellite. The optics design and the proposed production process for NuSTAR are based on those used to build the HEFT telescopes.

NuSTAR will be hundreds of times more sensitive than any previous hard X-ray instrument, which will greatly improve image resolution. It will orbit Earth at an altitude of about 600 kilometers for three years, allowing researchers to take a census of black holes. They hope to measure both the rate at which black holes are growing and the accretion rate at which material has fallen into black holes over time.

"It's rare you get the chance of increasing a sensitivity factor by more than 100 times better than current methods," Craig said. "This is really a game changer."

The Laboratory was involved in both the design and testing of the X-ray optics that will fly on NuSTAR. The lead optics engineer for the telescopes, Todd Decker, worked for NuSTAR while on leave from the Lab. As the manager of the payload (instrument) for NuSTAR, Craig was responsible for developing and integrating the instrument components and will be very involved in the science output (in addition to his role as LDRD director). Others at the Lab, primarily Mike Pivovaroff and Julia Vogel in the Physical and Life Sciences Directorate, played a key role in optics calibration and also will be involved in the science of NuSTAR.

NuSTAR will have more than 10 times the resolution and more than 100 times the sensitivity of its predecessors while operating in a similar energy range.

The mission will work with other telescopes in space now, including NASA's Chandra X-ray Observatory, which observes lower-energy X-rays. Together, they will provide a more complete picture of the most energetic and exotic objects in space, such as black holes, dead stars and relativistic jets (which are key to the production of gamma ray bursts and may be found near the centers of black holes) that travel near the speed of light.

As for the extreme objects, which emit the most energy in the universe in the shortest time frame, Craig said they "are a new class of objects that we've never been able to see before."

In addition, NuSTAR will enable the team to see the black holes that are believed to be in the center of all galaxies. In the early galaxies, dust skews the view of these , but NuSTAR will see right through that.

The NuSTAR mission was built by an international collaboration, led by Principal Investigator Fiona Harrison of Caltech. For more information, go to the NuSTAR Website.

Explore further: First potentially habitable Earth-sized planet confirmed: It may have liquid water

add to favorites email to friend print save as pdf

Related Stories

NASA Approves X-ray Space Mission

Sep 07, 2009

NASA recently confirmed that the Nuclear Spectroscopic Telescope Array, or NuSTAR, mission will launch in August 2011.

Launch of NASA's nuSTAR mission postponed

Mar 19, 2012

(PhysOrg.com) -- The planned launch of NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission has been postponed after a March 15 launch status meeting. The launch will be rescheduled to allow additional ...

NuSTAR mated to its rocket

Feb 20, 2012

(PhysOrg.com) -- NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) is being mated, or attached, to its Pegasus XL rocket today at Vandenberg Air Force Base in central California.

NASA's NuSTAR ships to Vandenberg for March 14 launch

Jan 25, 2012

(PhysOrg.com) -- NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, shipped to Vandenberg Air Force Base, Calif., on Tuesday, to be mated to its Pegasus launch vehicle. The observatory will detect X-rays ...

Recommended for you

A sharp eye on Southern binary stars

15 hours ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

15 hours ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

19 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...