Learning from nature

June 26, 2012

Using lotus leaves and tea tree oil researchers at Swinburne University of Technology are working to prevent infection and improve outcomes for people requiring medical implants, such as hip replacements.

Led by Professor Elena Ivanova and Dean of the Faculty of Life and Social Sciences, Professor Russell Crawford, the goal of the research team, which includes Swinburne postgraduate students and collaborators from James Cook University in Townsville and Laser Zentrum in Germany, is to develop a product and process that can be readily used in implant surgery.

Working at the micro and nano-scale level with components of tea tree oil and by mimicking the characteristics of the surface of the , the researchers are developing ground-breaking techniques to change the surface of and develop bioactive coatings to reduce the risk of infection and rejection in implant patients.

"The problem is that because titanium is an attractive surface for growing human tissue, it is also attractive to bacteria, " said Professor Crawford.

"We want to find a way by which we can change surfaces so they are less attractive for the bacteria but still retain their biocompatibility."

Using imaging and analytical instruments in Swinburne's Advanced Technologies Centre, the team has developed new insights into how interact and attach to surfaces.

Professor Crawford said the bacteria attach to the surface by secreting an extracellular polymeric substance, which enables them to form layers as they multiply, creating a biofilm.

"Normal disinfection processes will often only kill the surface layer of bacteria in the biofilm," Professor Crawford said.

This is where the surface of the lotus leaf is proving to be an invaluable tool for the researchers.

"With a lotus leaf, a droplet of water will not attach, but roll off. If we can replicate this to create hydrophobic surfaces, any bacteria that might be present can't wet the and therefore can't attach," Professor Crawford said.

"If we are able to stop bacteria attaching on titanium surfaces, we know that these implants will be safer. "

Tea tree oil is another vital component of the research, due to its ability to kill .

The researchers have taken a component of tea tree oil, and used it to create a coating for titanium implants in a process called plasma polymerisation.

"The vision is that we will one day have a device in hospitals that would allow surgeons to put this coating onto the titanium before it is surgically implanted, vastly reducing the risk of infection," Professor Crawford said.

"When people have to get hip implants replaced, it becomes a drain on the health-care system, and we hope our research can make a difference and reduce this pressure."

Explore further: Nanowire coating for bone implants, stents

Related Stories

Nanowire coating for bone implants, stents

August 27, 2007

University of Arkansas researchers have found a simple, inexpensive way to create a nanowire coating on the surface of biocompatible titanium that can be used to create more effective surfaces for hip replacement, dental ...

Nanostructures improve bone response to titanium implants

July 3, 2008

Titanium implants were successfully introduced by P.-I. Brånemark and co-workers in 1969 for the rehabilitation of edentulous jaws. After 40 years of research and development, titanium is currently the most frequently used ...

Nanomodified surfaces seal leg implants against infection

March 22, 2011

In recent years, researchers have worked to develop more flexible, functional prosthetics for soldiers returning home from battlefields in Afghanistan or Iraq with missing arms or legs. But even new prosthetics have trouble ...

Cobblestones fool innate immunity

November 29, 2011

Coating the surface of an implant such as a new hip or pacemaker with nanosized metallic particles reduces the risk of rejection, and researchers at the University of Gothenburg, Sweden, can now explain why: they fool the ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.