NASA space launch system core stage moves from concept to design

Jun 22, 2012
An expanded view of an artist rendering of the 70 metric ton configuration of NASA's Space Launch System. (NASA)

The nation's space exploration program is taking a critical step forward with a successful major technical review of the core stage of the Space Launch System (SLS), the rocket that will take astronauts farther into space than ever before.

The core stage is the heart of the heavy-lift . It will stand more than 200 feet (61 meters) tall with a diameter of 27.5 feet (8.4 meters).

NASA's Marshall Flight Center in Huntsville, Ala., hosted a comprehensive review. Engineers from NASA and The Boeing Co. of Huntsville presented a full set of system requirements, design concepts and production approaches to technical reviewers and the independent review board.

"This meeting validates our design requirements for the core stage of the nation's heavy-lift rocket and is the first major checkpoint for our team," said Tony Lavoie, manager of the SLS Stages Element at Marshall. "Getting to this point took a lot of hard work, and I'm proud of the collaboration between NASA and our partners at Boeing. Now that we have completed this review, we go from requirements to real blueprints. We are right on track to deliver the core stage for the SLS program."

The core stage will store and to feed the rocket's four RS-25 engines, all of which will be former space shuttle main engines for the first few flights. The SLS Program has an inventory of 16 RS-25 flight engines that successfully operated for the life of the . Like the space shuttle, SLS also will be powered initially by two solid on the sides of the launch vehicle.

The SLS will launch NASA's and other payloads, and provide an entirely new capability for human exploration beyond low Earth orbit. Designed to be safe, affordable and flexible for crew and cargo missions, the SLS will continue America's journey of discovery and exploration to destinations including nearby asteroids, Lagrange points, the moon and ultimately, Mars.

"This is a very exciting time for the country and NASA as important achievements are made on the most advanced hardware ever designed for human spaceflight," said William Gerstenmaier, associate administrator for the Human Exploration Operations Mission Directorate at NASA Headquarters in Washington. "The SLS will power a new generation of exploration missions beyond low Earth orbit and the moon, pushing the frontiers of discovery forward. The innovations being made now, and the hardware being delivered and tested, are all testaments to the ability of the U.S. aerospace workforce to make the dream of deeper solar system exploration by humans a reality in our lifetimes."

The first test flight of NASA's Space , which will feature a configuration for a 77-ton (70-metric-ton) lift capacity, is scheduled for 2017. As SLS evolves, a two-stage launch vehicle configuration will provide a lift capability of 143 tons (130 metric tons) to enable missions beyond and support deep space exploration.

Boeing is the prime contractor for the SLS core stage, including its avionics. The core stage will be built at NASA's Michoud Assembly Facility in New Orleans using state-of-the-art manufacturing equipment. Marshall manages the SLS Program for the agency.

Across the SLS Program, swift progress is being made on several elements. The J-2X upper-stage rocket engine, developed by Pratt & Whitney Rocketdyne for the future two-stage SLS, is being tested at Stennis Space Center in Mississippi. The prime contractor for the five-segment solid rocket boosters, ATK of Brigham City, Utah, has begun processing its first SLS hardware components in preparation for an initial qualification test in 2013.

Explore further: NASA's reliance on outsourcing launches causes a dilemma for the space agency

More information: For more information about the Space Launch System, visit: www.nasa.gov/sls

Related Stories

NASA's new upper stage engine passes major test

Nov 09, 2011

(PhysOrg.com) -- NASA conducted a successful 500-second test firing of the J-2X rocket engine on Wednesday, Nov. 9, marking another important step in development of an upper stage for the heavy-lift Space Launch System (SLS). ...

NASA moves shuttle engines from Kennedy to Stennis

Jan 16, 2012

(PhysOrg.com) -- The relocation of the RS-25D space shuttle main engine inventory from Kennedy Space Center's Engine Shop in Cape Canaveral, Fla., is underway. The RS-25D flight engines, repurposed for NASA's ...

Sls avionics test paves way for full-scale booster firing

Apr 03, 2012

(PhysOrg.com) -- NASA has successfully tested the solid rocket booster avionics for the first two test flights of the Space Launch System, America's next heavy-lift launch vehicle. This avionics system includes ...

Recommended for you

Crash test assesses plane emergency locator transmitters

11 hours ago

The Cessna 172 airplane dangled 82 feet in the air – looking almost like it was coming in for a landing, except for the cables attaching it to a huge gantry at NASA's Langley Research Center in Hampton, ...

NASA image: Curiosity's stars and stripes

12 hours ago

This view of the American flag medallion on NASA's Mars rover Curiosity was taken by the rover's Mars Hand Lens Imager (MAHLI) during the 44th Martian day, or sol, of Curiosity's work on Mars (Sept. 19, 2012). ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

wiyosaya
5 / 5 (1) Jun 22, 2012
I hope they have ironed out the safety issues from the previous incarnation of this rocket.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.