Molecularly imprinted polymers and bio-engineering

June 8, 2012
Molecularly imprinted polymers and bio-engineering
Credit: Thinkstock

Biorecognition at the molecular level is a rapidly advancing technology that has enlisted the help of synthetic polypeptides to come up with the ultimate antibody.

The EU 'Synthetic superantibodies - Bioinspired engineering of artificial receptor structures' (Superantibodies) project merged two fundamental processes. Together, they have resulted in the development of synthetic receptors that favour selected biomolecular interactions such as antibody-antigen binding.

Combining materials science with has the potential to inject the wonders of unparalled biorecognition into non-biological materials. Generation of artificial affinity reagents with similar characteristics to antibodies would have a high degree of specificity and affinity with huge potential in the biotechnology field.

Although can be generated against almost any substance using the hybridoma technique, they are large, complex proteins with complicated recombinant expression necessary for their function. Furthermore, their products tend to be unstable. The Superantibodies team aimed to overcome all these obstacles with the added benefit of being cheap to produce.

The theory was to use a genetically manipulated protein with natural ligand-binding properties. Add to this fully synthetic affinity reagents that can be prepared inexpensively as well as offer stability, and the result is the new class of artificial recognition elements, molecularly imprinted polymers (MIPs).

Superantibodies has successfully produced a biohybrid. An site composed of synthetic polypeptide loops that interact cooperatively with the antigen is combined and used to produce templates. This model gives rise to a molecular imprinting process to produce site-specific peptides that can be integrated into the backbone of a MIP.

In theory, it will be possible to change the number and type of peptide to tailor recognition agents that will outperform naturally derived antibodies. Applications of this exciting new technology not only include antibody/antigen uses but can be extended to enzymes, nucleic acid interactions and biosensing generally.

Explore further: Researchers develop new technique to tap full potential of antibody libraries

Related Stories

Manmade antibodies hold biomedical promise (w/ Video)

May 19, 2010

Antibodies are the immune system's warriors. Their role is to pinpoint disease pathogens, attaching to them and neutralizing their effects. Though antibodies are of great value for biomedical research, the process of creating ...

Recommended for you

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.