Making sense of molecular fragments

June 29, 2012
Figure 1: From next generation sequencer expression data for two genes (green), expressed in different plant tissues and conditions, the ARTADE2 computational algorithm produces more accurate representations of RNA molecule reconstructions (bottom) than the pre-processed transcriptional expression level indications shown in red (top). Unclear representations of the genes (top left), for example, are visible after applying ARTADE2 (bottom left). Credit: 2012 Tetsuro Toyoda, RIKEN Yokohama Institute

(Phys.org) -- Data from high-throughput next generation sequencers (NGS) and genome tiling arrays have greatly enhanced scientists’ ability to recreate RNA molecular structures, which is vital to disease and biotechnology research. However, high levels of noise and bias in some processes lead to uneven gene-expression values for segments belonging to the same molecule. Reconstructing the complete, or ‘full-length’, information of molecules as they occur in cells is therefore difficult.

To improve accuracy by reducing noise and bias, Tetsuro Toyoda, Shuji Kawaguchi, and Kei Iida at the RIKEN Bioinformatics And Systems Engineering division (BASE) in Yokohama, together with scientists from the RIKEN Plant Science Center, have developed a statistical algorithm for reconstructing full-length information of RNA using output from tiling arrays and NGS. They implemented this algorithm in a computer program called ‘ARabidopsis Tiling-Array-based Detection of Exons’ (ARTADE). 

The genome encoded in an organism’s DNA holds the blueprint for building and maintaining cells. For this building and maintenance to work, the DNA blueprint is copied, or ‘transcribed’, by molecules of RNA ‘transcripts’. RNA molecules use this code to create proteins or act themselves as functional molecules and regulate cell activities. Transcriptome is the name given to all the transcripts present at any one time in a cell. Transcriptomes hold vital information about living organisms, including how different protein genes are switched on and off in response to different environmental stresses.

Toyoda and his team further developed ARTADE, ARTADE2, so they could rebuild a virtual representation of the transcriptomes comprising RNA molecules. “Understanding transcriptomes is essential for research on molecular mechanisms of diseases and development of biotechnology with plant species,” Toyoda explains. “Both genome tiling arrays and NGS have output problems with uneven expression values from fragmentation and noise and bias from machinery. This makes it difficult to form a perfect reconstruction.”

ARTADE2 uses a new ‘positional correlation analysis’ developed by Kawaguchi and Iida so that it can analyze any species and be used for NGS output (Fig. 1). This process identifies areas where the transcriptional activities among multiple cellular conditions—such as differences in tissues, developmental stage, or environment—are highly correlated. Positional correlation removes output problems, providing a better representation of the original molecules.

The team has now begun developing a database using information from the rebuilt transcriptomes. This new technology and database will lead to deeper understanding of molecular structures and their alteration according to environmental stresses and disease, furthering understanding of the relationship between sequences and cell activities.

Explore further: Gene-reading enzyme, inhibitor protein interaction analysis provides surprising insights

More information: Kawaguchi, S., et al. Positional correlation analysis improves reconstruction of full-length transcripts and alternative isoforms from noisy array signals or short reads. Bioinformatics 28, 929–937 (2012).  doi: 10.1093/bioinformatics/bts065

Related Stories

Integrated bioinformatics gateways portal and interface

September 22, 2011

An easy-to-use bioinformatics interface has been developed by a research group led by Tetsuro Toyoda called the RIKEN Bioinformatics And Systems Engineering division (BASE), Yokohama. The web-service-based tool, called Semantic-JSON, ...

New method for studying gene activity developed

November 14, 2011

(PhysOrg.com) -- Researchers from UQ's Institute for Molecular Bioscience (IMB), Harvard University and RocheNimblegen Inc. have developed a new method for examining genetic information that reveals clues to understanding ...

Doubling the information from the Double Helix

April 27, 2012

(Phys.org) -- Our genes control many aspects of who we are — from the colour of our hair to our vulnerability to certain diseases — but how are the genes, and consequently the proteins they make themselves controlled?  ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.