Making sense of molecular fragments

Jun 29, 2012
Figure 1: From next generation sequencer expression data for two genes (green), expressed in different plant tissues and conditions, the ARTADE2 computational algorithm produces more accurate representations of RNA molecule reconstructions (bottom) than the pre-processed transcriptional expression level indications shown in red (top). Unclear representations of the genes (top left), for example, are visible after applying ARTADE2 (bottom left). Credit: 2012 Tetsuro Toyoda, RIKEN Yokohama Institute

(Phys.org) -- Data from high-throughput next generation sequencers (NGS) and genome tiling arrays have greatly enhanced scientists’ ability to recreate RNA molecular structures, which is vital to disease and biotechnology research. However, high levels of noise and bias in some processes lead to uneven gene-expression values for segments belonging to the same molecule. Reconstructing the complete, or ‘full-length’, information of molecules as they occur in cells is therefore difficult.

To improve accuracy by reducing noise and bias, Tetsuro Toyoda, Shuji Kawaguchi, and Kei Iida at the RIKEN Bioinformatics And Systems Engineering division (BASE) in Yokohama, together with scientists from the RIKEN Plant Science Center, have developed a statistical algorithm for reconstructing full-length information of RNA using output from tiling arrays and NGS. They implemented this algorithm in a computer program called ‘ARabidopsis Tiling-Array-based Detection of Exons’ (ARTADE). 

The genome encoded in an organism’s DNA holds the blueprint for building and maintaining cells. For this building and maintenance to work, the DNA blueprint is copied, or ‘transcribed’, by molecules of RNA ‘transcripts’. RNA molecules use this code to create proteins or act themselves as functional molecules and regulate cell activities. Transcriptome is the name given to all the transcripts present at any one time in a cell. Transcriptomes hold vital information about living organisms, including how different protein genes are switched on and off in response to different environmental stresses.

Toyoda and his team further developed ARTADE, ARTADE2, so they could rebuild a virtual representation of the transcriptomes comprising RNA molecules. “Understanding transcriptomes is essential for research on molecular mechanisms of diseases and development of biotechnology with plant species,” Toyoda explains. “Both genome tiling arrays and NGS have output problems with uneven expression values from fragmentation and noise and bias from machinery. This makes it difficult to form a perfect reconstruction.”

ARTADE2 uses a new ‘positional correlation analysis’ developed by Kawaguchi and Iida so that it can analyze any species and be used for NGS output (Fig. 1). This process identifies areas where the transcriptional activities among multiple cellular conditions—such as differences in tissues, developmental stage, or environment—are highly correlated. Positional correlation removes output problems, providing a better representation of the original molecules.

The team has now begun developing a database using information from the rebuilt transcriptomes. This new technology and database will lead to deeper understanding of molecular structures and their alteration according to environmental stresses and disease, furthering understanding of the relationship between sequences and cell activities.

Explore further: Researchers discover new strategy germs use to invade cells

More information: Kawaguchi, S., et al. Positional correlation analysis improves reconstruction of full-length transcripts and alternative isoforms from noisy array signals or short reads. Bioinformatics 28, 929–937 (2012).  doi: 10.1093/bioinformatics/bts065

Related Stories

Integrated bioinformatics gateways portal and interface

Sep 22, 2011

An easy-to-use bioinformatics interface has been developed by a research group led by Tetsuro Toyoda called the RIKEN Bioinformatics And Systems Engineering division (BASE), Yokohama. The web-service-based ...

Silence of the genes

Jul 22, 2011

A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama, Japan. ...

Doubling the information from the Double Helix

Apr 27, 2012

(Phys.org) -- Our genes control many aspects of who we are — from the colour of our hair to our vulnerability to certain diseases — but how are the genes, and consequently the proteins they make ...

New method for studying gene activity developed

Nov 14, 2011

(PhysOrg.com) -- Researchers from UQ's Institute for Molecular Bioscience (IMB), Harvard University and RocheNimblegen Inc. have developed a new method for examining genetic information that reveals clues to understanding ...

Recommended for you

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0