Melanin considered for bio-friendly electronics

Jun 27, 2012
Natural melanins such as squid ink are being considered as new materials for bioelectronics. Credit: Dr Paul Schwenn

(Phys.org) -- Melanin – the pigment that colours skin, eyes and hair – could soon be the face of a new generation of biologically friendly electronic devices used in applications such as medical sensors and tissue stimulation treatments.

Led by Professor Paul Meredith and Associate Professor Ben Powell at The University of Queensland, an international team of scientists has published a study that for the first time gives remarkable insight into the electrical properties of this pigment and its biologically compatible “bioelectronic” features.

“Semiconductors are arguably the most important modern day high-tech material – they drive all modern electronics,” said Professor Meredith.

“The majority of semiconductors are made from inorganic elements or compounds such as silicon or gallium arsenide.”

Organic semiconductors, on the other hand, are a relatively new member of the semiconductor family and are composed of molecules containing carbon, hydrogen and other elements.

“There are very few examples of natural organic semiconductors and was thought to be the very first example, demonstrated to be such in the early 70s,” said Professor Meredith.

Co-author Associate Professor Powell said that in semiconductors, such as those found in computers and mobile phones, carry the electrical current. However, in biological systems, such as brains and muscles, ions carry the current.

“We've now found that in melanin, both electrons and ions play important roles,” he said.

The study – published recently in Proceedings of the National Academy of Sciences – points to a new way of interfacing conventional electronics to biological systems using a combination of ion-and-electron conducting biomaterials such as melanin.

“Melanin is able to ‘talk' to both electronic and ionic control circuitry and hence can provide that connection role,” said Professor Meredith about the study's finding, the culmination of ten years of research and experiments.

“There are very few materials that meet these compatible bioelectronic requirements, and an insight into melanin's important biological functions and properties has been really crucial in this study.”

In recent years, the electronics industry has been driven to develop materials and components that are cheaper and more environmentally friendly.

“There is a realisation that in many such applications, we should move on from the relatively more expensive inorganic semiconductors. We need cheaper, safer electronic materials with greener credentials,” said Professor Meredith.

“Organic conductors and semiconductors are widely viewed has having enormous potential in this regard, and in the area of medical sensors and devices, biocompatibility will be a key requirement.”

The team is currently working on creating ion-based electrical devices using melanin, with a view to ultimately connect them to actual biological systems.

“A critical area that one could foresee for bioelectronics is stimulating or repairing signal-carrying pathways in tissues such as muscle or brain,” said Professor Meredith.

Other researchers in the study are Professor Ian Gentle, Professor Graeme Hanson, Dr Bernie Mostert (currently at Lancaster University and central figure in the research) -- all from The University of Queensland, as well as researchers from the United Kingdom and Poland.

Explore further: New research predicts when, how materials will act

More information: The paper, Role of semiconductivity and ion transport in the electrical conduction of melanin, by Mostert et al., can be viewed online here.

Related Stories

Toward a better understanding of bilayer graphene

Oct 26, 2010

(PhysOrg.com) -- "Graphene is a very exciting material with a number of interesting possibilities, including for use in electronic devices," Pablo Jarillo-Herrero tells PhysOrg.com. "However, all graphene system ...

The origin of organic magnets

Mar 02, 2012

Electrical engineers are starting to consider materials made from organic molecules -- including those made from carbon atoms -- as an intriguing alternative to the silicon and metals used currently in electronic ...

New plastics can conduct electricity

Feb 22, 2011

(PhysOrg.com) -- A newly discovered technique makes it possible to create a whole new array of plastics with metallic or even superconducting properties.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.